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Abstract 

The US Strategic Command (USSTRATCOM) operated Space Surveillance 

Network (SSN) is tasked with Space Situational Awareness (SSA) for the US military. 

This system is made up of Electro-Optic sensors such as the Space Surveillance Telescope 

(SST) and Ground-based Electro-Optical Deep Space Surveillance (GEODSS) as well as 

RADAR based sensors such as the Space Fence. While Lockheed Martin’s Space Fence is 

very adept at detecting & tracking objects in Low Earth Orbit (LEO) below 3000 Km in 

height [1], gaps remain in the tracking of Resident Space Objects (RSO’s) in 

Geosynchronous Orbits (GEO) due to limitations associated with the implementation of 

the SST and GEODSS systems.  

This thesis explores a reliable, ground-based technique to quickly determine the 

altitude of a RSO from a single or limited set of observations; implementation of such 

sensors into the SSN would mitigate GEO SSA performance gaps. The research entails a 

method to distinguish between the point spread function (PSF) observed by a star and the 

PSF observed from an RSO using Multi-Hypothesis Testing with parallax as a test 

criterion. Parallax is the effect that an observed object will appear to shift when viewed 

from different positions. This effect is explored by generating PSFs from telescope 

observations of space objects at different baselines. The research has shown the PSF of an 

RSO can be distinguished from that of a star using single, simultaneous observations from 

reference and parallax sensing telescopes. This thesis validates these techniques with both 

simulations and with experimental data from the SST and Naval Observatory sensors.  



www.manaraa.com

v 

Acknowledgments 

Some special thanks are due to Dr. Steven Cain for all the exemplary mentorship during 

the creation of this project. Without his guidance and instruction, the implementation of 

the simulation would have been significantly more difficult. His lectures and projects on 

MATLAB implementation were also pivotal in the understanding by the author of these 

topics. 

 

       Joseph C. Tompkins 

 

 

 

  



www.manaraa.com

vi 

Table of Contents 

Abstract .............................................................................................................................. iv 

Acknowledgments................................................................................................................v 

Table of Contents ............................................................................................................... vi 

List of Figures .................................................................................................................. viii 

List of Tables ..................................................................................................................... xi 

List of Acronyms .............................................................................................................. xii 

List of Symbols ..................................................................................................................xv 

I.  Introduction .....................................................................................................................1 

Motivation for Research ...............................................................................................3 

Research Goals .............................................................................................................4 

Thesis Summary ...........................................................................................................5 

II.  Fourier Optics Methodology ..........................................................................................7 

Fourier Optics ...............................................................................................................7 

Non-Paraxial PSF Generation ....................................................................................13 

Effects of the Atmosphere ..........................................................................................19 

Average Optical Transfer Function ............................................................................23 

Photon Counting Noise...............................................................................................28 

Decomposing Aberrations into Zernike Polynomial Bases........................................31 

III. Detection Algorithm Methodology  .......................................................................35 

Point Detection ...........................................................................................................35 

Correlation Detection .................................................................................................38 

Multi-Hypothesis Test ................................................................................................43 

MHT Derivation for Two Telescopes ........................................................................45 

CD MHT with Identical Telescopes ...........................................................................47 



www.manaraa.com

vii 

CD MHT with Different Telescopes ..........................................................................53 

Performance Metrics ..................................................................................................55 

IV.  MATLAB Simulation .................................................................................................63 

Simulation Setup ........................................................................................................63 

Average OTF ..............................................................................................................65 

Off-Axis PSF ..............................................................................................................69 

Simulating Background Noise and Frames of Data ...................................................77 

Correlator Detector Multi-Hypothesis Test with System of Identical Telescopes .....82 

V. Experiment ....................................................................................................................91 

Experimental Setup and System PSF Registration .....................................................91 

Correlator Detector Multi-Hypothesis Test with System of Different Telescopes ....98 

VI. Conclusions and Recommendations ..........................................................................106 

Conclusions ..............................................................................................................106 

Recommendations ....................................................................................................107 

VII. Bibliography .............................................................................................................108 

   



www.manaraa.com

viii 

List of Figures 

Figure 1: Visual Depiction of R12 ....................................................................................... 7 

Figure 2: Aperture Function of Parabolic Mirror Telescope .............................................. 9 

Figure 3: Auto-Correlation of the Pupil Function............................................................. 13 

Figure 4: Visual Depiction of Telescope Arrangement for Parallax Detection ................ 14 

Figure 5: New Coordinate System for Non-Paraxial Propagation [13] ............................ 15 

Figure 6: Effects of Atmospheric Turbulence on Plane Waves [15] ................................ 19 

Figure 7: First Six Zernike Polynomials ........................................................................... 32 

Figure 8: Physical Cause of Tilt Aberration [18].............................................................. 33 

Figure 9: Tilt Aberration as Described by a3 Zernike Polynomial ................................... 34 

Figure 10: Aperture Transmittance Function for F10 Telescope in Simulation ............... 64 

Figure 11: F10 Telescope PSF from 2D Fourier Transform ............................................. 65 

Figure 12: OTF of the Atmosphere with 15 cm ro and 28.8 cm Aperture Diameter ........ 66 

Figure 13: OTF of F10 Telescope with 28.8 cm Diameter ............................................... 67 

Figure 14: Total OTF of Atmosphere and Telescope with 15 cm r0 and D of 28.8 cm .... 68 

Figure 15: PSF of Total Optical System with 15 cm r0 and D of 28.8 cm ....................... 68 

Figure 16: Area Containing F10 Telescope PSF in Nyquist Pixels .................................. 70 

Figure 17: Non-Paraxial PSF From Baselines of 0 meters to 1000 meters with NEO ..... 72 

Figure 18: Enlarged Non-Paraxial PSF From Baselines of 0 meters to 1000 meters ....... 73 

Figure 19: Zernike Polynomial Decomposition of Off-Axis PSFs at Varying Baselines 75 

Figure 20: Non-Paraxial PSF From Baselines of 0 meters to 1000 meters with Star ....... 76 

Figure 21: Zernike Polynomial Decomposition of Off-Axis PSFs at Varying Baselines 77 

Figure 22: Observation and Background Luminosity without Poisson Noise .................. 79 



www.manaraa.com

ix 

Figure 23: Image at CCD Array........................................................................................ 79 

Figure 24: Parallax Data Frames Containing GEO Observations and Background Noise 80 

Figure 25: Parallax Data Frames Containing Stellar Observations and Background Noise

 .................................................................................................................................... 81 

Figure 26: Algorithm Performance with Satellite Present in Data Frame and SNR of 6 . 84 

Figure 27: Algorithm Performance with Satellite Present in Data Frame and SNR of 3 . 85 

Figure 28: Algorithm Performance with Satellite Present in Data Frame and SNR of 2 . 86 

Figure 29: Algorithm Performance with Satellite Present in Data Frame and SNR of 1 . 87 

Figure 30: Algorithm Performance with Satellite Present in Data Frame and SNR of 1/2

 .................................................................................................................................... 88 

Figure 31: Algorithm Performance with Satellite Present in Data Frame and SNR of 1/3

 .................................................................................................................................... 88 

Figure 32: Algorithm Performance with Satellite Present in Data Frame and SNR of 1/6

 .................................................................................................................................... 89 

Figure 33: Linear ROC Curves at Different Baselines for SNR’s of 1, 1/2 and 1/3 ........ 89 

Figure 34: Two Telescopes Tracking Primary Target and Secondary Target in FOV ..... 93 

Figure 35: Observation from SST Telescope of ANIK-F1 and ANIK-F1R ..................... 96 

Figure 36: Observation from Naval Observatory Telescope of ANIK-F1 and ANIK-F1R

 .................................................................................................................................... 96 

Figure 37: Test PSF for Reference Telescope .................................................................. 99 

Figure 38: Test PSF for Parallax Sensing Telescope Hypothesizing H1 is true ............. 100 

Figure 39: Test PSF for Parallax Sensing Telescope Hypothesizing H2 is true ............. 101 

Figure 40: SNR using CD MHT and SNR using PD vs. SST Frame Number ............... 102 



www.manaraa.com

x 

Figure 41: SNR of Z1 vs. SST Frame Number ............................................................... 103 

Figure 42: PD NEO using CD MHT and PD using PD vs. SST Frame Number ................ 105 

 



www.manaraa.com

xi 

List of Tables 

Table 1: Categorization of Observations with LRT's ....................................................... 49 

Table 2: Performance Metrics Given Satellite Present ..................................................... 56 

Table 3: Performance Metrics Given Stellar Object Present ............................................ 57 

Table 4: F10 Telescope System with 288mm Aperture Diameter and 2.8m Focal Length

 .................................................................................................................................... 71 

Table 5: Decomposition of PSF Phase at Different Baselines into Zernike Polynomials 75 

Table 6: Locations of Both Targets and Both Telescopes ................................................ 95 

Table 7: Registration of Parallax Effect due to Different Observation Locations ............ 97 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



www.manaraa.com

xii 

List of Acronyms 

SSN Space Surveillance Network .................................................................................. iv 

 Refers to space surveillance sensors used by the USAF for SSA 

SSA Space Situational Awareness ................................................................................. iv 

“SSA encompasses intelligence on adversary space operations; surveillance of all 

space objects and activities; detailed reconnaissance of specific space assets; 

monitoring space environmental conditions; monitoring cooperative space assets; 

and conducting integrated command, control, communications, processing, 

analysis, dissemination, and archiving activities” [2] 

SST Space Surveillance Telescope ................................................................................ iv 

 Electro-optic sensor used for SSA purposes by the USAF as a part of the USAF SSN 

LEO Low Earth Orbit ..................................................................................................... iv 

 Region of space below 2,000 km 

RSO Resident Space Object ........................................................................................... iv 

 Natural or artificial object near the Earth 

GEO Geosynchronous Earth Orbit.................................................................................. iv 

 The region of space at 5,678 km 

CDO Contested, Degraded and Operationally Limited .....................................................1 

C3  Command, Control and Communications................................................................1 

DOD Department of Defense ............................................................................................1 

GAO Government Accountability Office..........................................................................1 

SBSS Space Based Surveillance System ...........................................................................1 

MEO Medium Earth Orbit .................................................................................................1 



www.manaraa.com

xiii 

 The region of space between Low Earth Orbit and Geosynchronous Earth Orbit 

JSpOC Joint Space Operations Center .................................................................................2 

The C2 USAF system for planning and execution of the USAF space mission 

JMS JSpOC Mission System............................................................................................2 

 Provides cross service environment which improves SSA capabilities 

C2 Command and Control .............................................................................................2 

NEO Near Earth Object ....................................................................................................2 

 Small solar system body whose orbit approaches the Earth 

UCT Uncorrelated Target .................................................................................................2 

 Detected space object that doesn’t correlate with entries recorded in the space 

catalogue kept by the JSpOC JMS 

AFA Air Force Association ..............................................................................................2 

CCD Charge-coupled device.............................................................................................3 

 Electromagnetic sensor to detect the arrival of photons and convert numbers of 

photon arrivals at a pixel to digital counts 

PSF Point Spread Function  ...........................................................................................10 

 Impulse response of an optical system 

OTF Optical Transfer Function ......................................................................................12  

 Optical system response to a range of spatial frequencies 

WSS Wide Sense Stationary ...........................................................................................19 

 Constant mean random variable whose autocorrelation is only dependent on a time 

difference 

PDF  Probability Distribution Function ..........................................................................20 



www.manaraa.com

xiv 

 Used to find the probability that a RV will fall within a given range of values 

PSD Power Spectral Density ..........................................................................................21 

 Frequency response of a random signal 

PD Point Detector ........................................................................................................35 

 Compares an observed pixel signal strength to a threshold 

LRT Likelihood Ratio Test ............................................................................................35 

 Ratio formed by dividing the PD or CD output under the different positive 

Hypotheses by the null Hypothesis 

SNR  Signal to Noise Ratio .............................................................................................38 

 Compares the signal strength from an object to that of the background 

CD Correlator Detector ................................................................................................39 

 Correlates observed data with an expected Hypothesis and then compares the 

output to a threshold 

MHT Multi-Hypothesis Test ...........................................................................................43 

 Compares LRT outputs under certain Hypotheses to determine which has more 

likely occurred 

CLT  Central Limit Theorem ..........................................................................................57 

 States that adding independent RV’s results in a Gaussian distribution 

ROC Receiver Operating Characteristics........................................................................61 

Curve created by plotting the true positive detection probability against the false 

positive detection probability 

RV Random Variable ...................................................................................................82 

 Variable with possible values occurring randomly 



www.manaraa.com

xv 

List of Symbols 

12R  Distance from point in source plane to point in observation plane..........................7 

,x y  Source plane coordinates  ........................................................................................7 

', 'x y  Observation plane coordinates .................................................................................7 

z  Distance between source and observation planes  ...................................................7 

  Wavelength ..............................................................................................................7 

1U  Optical field in source plane ....................................................................................8 

2U  Optical field in aperture plane .................................................................................8  

j  Square root of negative 1 .........................................................................................8 

,x yF F  Optical frequencies ..................................................................................................9 

  Phase delay term due to thin lens, mirror or atmosphere .......................................10 

f  Focal point of thin lens or mirror ...........................................................................10 

3U  Optical field in CCD plane ....................................................................................10 

I  Time averaged value of the magnitude squared of the optical field ......................10 

h  Impulse response of optical system known as PSF ...............................................11 

i  Intensity of the optical field as seen at the detector ...............................................11 

O  Field from observed object at detector plane .........................................................11 

E  total energy from the observed object ....................................................................11 

,q w  Dummy variables for convolution operation .........................................................12 

,u v  Spatial frequencies .................................................................................................12 

H  Optical transfer function ........................................................................................12 



www.manaraa.com

xvi 

 P  Pupil function .........................................................................................................12 

A  Aperture transmittance function ............................................................................12 

  Phase used in aperture function .............................................................................12 

  Dirac function ........................................................................................................15 

,c cx y  Coordinates of optical axis ....................................................................................16 

,d dx y  Deviations from optical axis ..................................................................................16 

'', ''x y  Coordinates describing deviation from optical axis in terms of , ,  &  c c d dx y x y  ..16 

,s sx y  Substitution variable to get new R12 variable in form for Binomial Expansion ....16 

0R  Distance from point in source plane to point observation plane using 2x and 2y  .17 

maxn  Radius of the resulting non-paraxial PSF ..............................................................18 

#F  Focal length divided by aperture diameter.............................................................18  

n  Fluctuation in index of refraction ..........................................................................20 

1 1,x y  Coordinates in aperture plane for atmospheric phase delay computation .............21 

2 2,x y  Coordinates in aperture plane for atmospheric phase delay computation .............21 

sD  Structure function of atmosphere ...........................................................................21 

,x y   Difference between 1 1,x y  and 2 2,x y  respectively ...................................................22 

R  The correlation .......................................................................................................22 

nR  The auto-correlation ...............................................................................................22 

[]E  Expected value .......................................................................................................22 

r  Separation between two points in the aperture plane  ............................................22 

nD  Structure function from Kolmogorov spectrum  ....................................................22 



www.manaraa.com

xvii 

 2

nC  Auto-correlation of n at zero shift ..........................................................................22 

nC  Variance of index of refraction ..............................................................................22 

0r  Fried’s seeing parameter ........................................................................................23 

  Phase as represented by Zernike phase screens .....................................................25 

  Average wavelength...............................................................................................25 

uM  Characteristic function ...........................................................................................25 

  Standard deviation .................................................................................................25 

2  Variance .................................................................................................................25 

w  Frequency ...............................................................................................................25 

u  Mean ......................................................................................................................25 

R  Correlation of the phase screen ..............................................................................26 

D  Structure function for average atmosphere ............................................................26 

sH  Characteristic function of the atmospheric phase term ..........................................27  

oH  Transfer function of a perfect pupil with no phase error .......................................27 

sD  Phase structure function of the atmosphere as defined by Kolmogorov ...............27 

N  Number of photons produced by an optical source ...............................................28 

K  Number of photons arriving at the detector  ..........................................................28 

sP  Expected number of photon arrivals at the detector ..............................................28 

( )t  Rate function describing photon arrivals ...............................................................28 

1 2,t t  Time interval camera is integrating .......................................................................28 

Pr  Probability of K arrivals at the detector .................................................................29 



www.manaraa.com

xviii 

C Constants in polynomial expansion .......................................................................29 

NZ  Zernike polynomials ..............................................................................................32 

Na  Zernike polynomial weighting factors ...................................................................32 

H1 Hypothesis that a pixel contains a NEO detection .................................................35 

H2 Hypothesis that a pixel contains a stellar detection ...............................................44 

H0 Hypothesis that a pixel contains background.........................................................35 

S Signal strength of the object in pixel under H1 ......................................................36 

B Signal strength of the pixel with only background photons ..................................36 

1Hm  Mean of data under H1 ...........................................................................................36 

0Hm  Mean of data under H0 ...........................................................................................36 

  Target detection threshold......................................................................................36 

1 2,   LRT from Ratio of Gaussian PDF’s under H1 or H2 and H0 cases ........................36 

  Standard deviation of Likelihood Ratio Test under H0 case ..................................42 

d1 Data collected by reference telescope ....................................................................45 

d2 Data collected by parallax sensing telescope .........................................................45 

parallaxh  Parallax sensing telescope’s PSF ...........................................................................46 

NEOh  Parallax sensing telescope’s PSF when a NEO is being observed ........................46 

starh  Parallax sensing telescope’s PSF when a stellar object is being observed ............46 

refh  Reference telescope’s PSF .....................................................................................46 

PD Probability of detecting either a NEO or stellar target ..........................................56 

FAP  Probability if detecting either a NEO or stellar target when a target isn’t there ....56 



www.manaraa.com

xix 

MissP  Probability of not detecting a NEO or stellar target when a target is there  ..........56 

NEODP  Probability of detecting a NEO and correctly classifying it as a NEO ..................56 

starIDP  Probability of detecting a star when a NEO is really being observed  ..................56 

starDP  Probability of detecting a star and correctly classifying it as a star .......................57 

NEOIDP  Probability of detecting a NEO when a star is really being observed ...................57 

1X  Gaussian random number for LRT under H1 hypothesis .......................................58 

2X  Gaussian random number for LRT under H2 hypothesis .......................................58 

1Z  Gaussian random number which is the difference between 1X  and 2X  ...............58 

2Z  Gaussian random number which is the difference between 2X  and 1X  ...............60 

m  Matrix of means of two LRT’s ..............................................................................62 

  Matrix of variances and covariances of LRT’s ......................................................62 

 

 



www.manaraa.com

1 

NEAR EARTH SPACE OBJECT DETECTION UTILIZING PARALLAX AS MULTI-

HYPOTHESIS TEST CRITERION 

 

I.  Introduction 

SSA is paramount in any military operation because the warfighter’s success is 

hinged on the space environment being a sanctuary; such is the serious weakness of the US 

military’s current stratagem. The official USAF description of the SSA mission is that 

“SSA encompasses intelligence on adversary space operations; surveillance of all space 

objects and activities; detailed reconnaissance of specific space assets; monitoring space 

environmental conditions; monitoring cooperative space assets; and conducting integrated 

command, control, communications, processing, analysis, dissemination, and archiving 

activities” [2]. In reality, the space operational environment of the future will be contested, 

degraded and operationally limited (CDO) which necessitates that the US maintain a 

comprehensive situational awareness of it at all times [3]. These challenges necessitate the 

evolution of SSA techniques to ensure that there are no gaps in the SSN allowing un-

predicted collisions or exploitation by adversaries. Protecting our nation’s space-based 

reconnaissance and command, control and communication (C3) assets is paramount for our 

ability to project power to the warfighter. 

Indeed, the US Department of Defense (DOD) is pursuing an aggressive 

modernization effort of its SSA assets. The Air Force’s FY 2017 Research, Development, 

Test & Evaluation Budget (FY17 RTD&E) shows an allotment of $1.47 billion for SSA 

efforts thru FY 2021 [2] and the Government Accountability Office (GAO) indicates that 

the DOD is planning to spend upwards of $6 Billion dollars on SSA efforts thru 2020 [4]. 

Current efforts to bolster the SSN include the $1.56 billion Space Fence which is under 
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construction at the Kwajalein Atoll in the Marshall Islands and the classified budget 

Geosynchronous Space Situational Awareness Program (GSSAP), as part of the Space 

Based Surveillance System (SBSS), which has 4 operational satellites monitoring the 

geosynchronous orbit altitude (GEO). The Space Fence will not be able to track objects 

beyond Low Earth Orbit (LEO) and will only have limited Medium Earth Orbit (MEO) 

surveillance abilities. It can be assumed that GSSAP has exceptional GEO object tracking 

and surveillance abilities, but DOT&E reports suggest that it may have shortfalls in the 

areas of survivability, reliability and ground control [5]. The USAF is also modernizing 

the Joint Space Operations Center (JSpOC) by investing $1 billion in a program known as 

the JSpOC Mission System (JMS) so that data from the SSN sensors can be collected, 

combined and analyzed at one central location to provide for command and control (C2) 

decisions in the space domain [6]. The effort is vital for the modernization of space 

surveillance; according to Gen. Hyten, commander USTRATCOM, the JSpOC Mission 

System “is the key to everything—the key to the kingdom” and it is “the key to the future 

where [the Air Force] is going” [7]. Gen. Goldfein, U.S. Air Force Chief of Staff, states 

“space is the ultimate high ground… space superiority is not an American birth right, it is 

something we will fight for” [8]. SSA is the critical link in the chain of space superiority.  

Another realm which needs to be explored to strengthen U.S. SSA capabilities is 

the realm of sensor fusion. Currently, individual sensors search for NEO’s and report any 

uncorrelated targets (UCT) state vectors to the JSPOC JMS which then keeps track of those 

objects in its space catalogue. At the AFA Space and Cyberspace Symposium, Gen. 

Goldfein said that much of his current efforts are preparing the AF to be effective for a 

FY2030 conflict; he emphasized that current capabilities are the ones established by 
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predecessors and that the 24th AF Chief of Staff will “go to war with the force that we build 

today… [t]he future of warfare in the age of cognition is going to be about network and 

data—does it connect? Good. Can it share? Even better” [8]. He mentioned either 

connected systems or systems which share data over twenty times in his one-hour long 

speech and challenged all AF leaders to find ways to make the marbles connect and share. 

The argument is compelling and it is logical that a system of sensors should operate more 

effectively as part of a network rather than isolated data collection nodes. Novel ways to 

leverage the capabilities of a network of ground based electro-optic sensors needs to be 

explored; a network approach to NEO detection which leverages shared, simultaneous 

observations would enable a more robust method than just utilizing single sensors 

independently. Could the AF’s SSN be made more perceptive and robust than the sum of 

its parts if those parts were combined into a network or if the data were shared to create 

more meaningful datasets? Data from sensors at different geographic locations contains 

unique information about an observation; can the sensors share their data for a more 

perceptive detection scheme?  

Motivation for Research 

Although the DOD has clearly recognized the importance of SSA and is investing 

accordingly, certain paradigms are prevalent among academia and industry for the 

characterization of RSO’s. SST and GEODS, which are operated by MIT Lincoln 

Laboratories, are the primary ground-based electro-optic sensors in the SSN and use 

velocity matched filtering to classify RSO’s [9]. This methodology entails monitoring an 

object over an extended period to see how it’s moving to decide whether the object is of 
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interest. The velocity matched filtering technique would miss objects which are moving 

with un-hypothesized velocities or orbits. This technique also requires a detection to be 

registered in five successive frames so that dim objects with wavering brightness could be 

lost between samples. Objects which aren’t bright enough over an extended time could be 

missed and avenues are opened for adversaries to exploit SSA sensors using maneuverable 

or dim space assets.  If the SSN contained a sensor with the capability to determine a RSO’s 

state vector with single or limited observations, the sensor would produce smaller data sets, 

detect dimmer objects and close gaps which adversaries could exploit. Even better would 

be a method to utilize a network of ground based electro-optic sensors and leverage their 

simultaneous data sets to produce a more perceptive detection scheme for NEO’s. Space 

based assets may be more capable at detecting dimmer objects over extended periods but 

suffer from cost, reliability and C2 limitations [5]. The need for a cost-effective ground 

based technique to quickly determine the RSO state vector of an observation from single 

or limited data sets is apparent. A network of sensors may present itself as the ideal 

machinery for such a technique.    

Research Goals  

This paper proposes a method to distinguish between the point spread function 

(PSF) observed by a star and the PSF observed from an RSO using Multi-Hypothesis 

Testing with parallax as a test criterion. Parallax is the effect that an object observed 

stereoscopically will appear different when viewed from different angles; the effect is 

easily demonstrated by looking at a close by object and observing its apparent change in 

position when closing one eye or the other. This effect can be explored by generating PSFs 
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from telescope observations of objects using two telescopes separated by some baseline 

distance. The parallax effect will primarily manifest itself in tilt aberrations which will 

cause the PSF to appear in a different location on the CCD of the parallax sensing telescope.  

The goal of this research is to validate the use of a system of parabolic telescopes 

to detect parallax using Fourier Optics and Statistical Optics. Using Fourier Optics, a 

technique for finding parallax will be explored with a telescope system consisting of a 

reference and parallax sensing telescope. Statistical Optics will be utilized to characterize 

the statistical model of the parabolic mirror telescope system so that the jointly distributed 

data can be run through Likelihood Ratio Testing (LHT) to come up with a meaningful 

Multi-Hypothesis Test (MHT) criterion. Based on the statistical model for the PSF of 

NEOs and stellar objects, multi-hypothesis theory will be utilized to filter observed PSFs 

into different categories using single or limited synchronous observations from two 

telescopes. Success of these research goals will be measured by demonstrating the parallax 

sensing technique using simulated and real data in the presence of various real-world noise 

sources. Performance metrics will be identified to quantify the performance of this 

technique in meaningful and straightforward ways. 

Thesis Summary 

The purpose of this research is to demonstrate that a CD MHT detection algorithm can 

effectively categorize a detected target as either a stellar or NEO observation. Chapter 2 

lays out the foundations for modeling the optical system PSF in the paraxial and non-

paraxial case, modeling the atmospheric effects on the optical system for long-exposure 

observations, modeling the effects of background noise from random photon arrivals and 
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decomposing the optical system phase into distinct aberrations as represented by Zernike 

polynomials. Chapter 3 discusses the PD and CD algorithms used for space object detection 

in currently operational ground based optical sensors and the CD MHT algorithm 

developed by Zingarelli [10], [11]. Chapter 3 also explains the new concept for detecting 

a target and categorizing that target as either a stellar or NEO observation in a single data 

frame using the proposed CD MHT algorithm with optical systems designed to detect 

parallax and laid out the metrics useful for determining the performance of the new 

algorithm.  In Chapter 4, the optical system with identical telescopes separated by varying 

baselines is simulated in MATLAB using the concepts in Chapter 2 and the CD MHT 

algorithm defined in Chapter 3 is tested given the simulated data frames as inputs. Chapter 

4 also generates the performance metrics derived in Chapter 3 using a Monte Carlo 

approach by running thousands of randomly generated data frames through the CD MHT 

algorithm to produce many LRT realizations; these realizations are used to characterize the 

statistics of the CD MHT algorithm’s performance with different target SNR values.  In 

Chapter 5, a real world optical system with different telescopes is utilized to collect 

synchronous observations of two targets as the targets are eclipsed by the earth; the 

experimental setup is analyzed to properly register the PSF’s required by the CD MHT 

algorithm and the experimental data is then run through the CD MHT algorithm to evaluate 

its performance as compared to the PD algorithm used by SSN ground based sensors today.  
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II.  Fourier Optics Methodology 

This chapter lays out the foundations for modeling the optical system PSF in the paraxial 

and non-paraxial case.  The effects of a turbulent atmosphere on the incoming wave-front 

from a distant space observation are analyzed in the long exposure case.  The effects of 

background noise from random photon arrivals is derived so that it might be accurately 

modeled in later simulations. Because the effects of parallax on an optical system are easily 

explained in terms of optical aberrations, decomposing the optical phase into distinct 

aberrations as represented by Zernike polynomials is also discussed.  

Fourier Optics 

The propagation of light from a source point, S, to an observation point, P, can be modeled 

by the 2-D Fourier transform with the proper Fourier kernel provided certain conditions 

are met. The net field from a source plane is propagated to an observation plane some 

distance, z, away and the distances between the source points and observation points, R12, 

are described using Pythagorean’s theorem.  

 

Figure 1: Visual Depiction of R12 

The phase and amplitude of the field at the observation plane is found exactly by computing 

and summing up the individual field values at every grid point in the observation plane. 

Also known as the Rayleigh-Sommerfeld propagation method, this method is far too 
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cumbersome and necessary simplifications are made using valid approximations. This 

propagation involves using the exact distances, R12, from each point in the two planes to 

determine what the field in the observation plane, U2, is based on the field in the source 

plane, U1, and the propagation distances. Other variables in (2.1) include the wavelength 

of the light,  , and the distance between the two planes, z.  
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where,  
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Using the binomial-expansion on R12 as shown in Equation (2.3) and substituting it into 

the former equation, the Fresnel approximation is obtained in Equation (2.4). 
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valid given the following condition on z, 
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The Fraunhofer approximation is obtained by making the approximation that the 

propagation distance is much greater than the other terms in the quadratic phase factor 

causing the Fresnel term to vanish.  
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where,  

 
' '

 and x y

x y
F F

z z 
    (2.8) 

   

Equation (2.7) is the Fourier transform of the aperture evaluated at the optical frequencies 

xF  and yF  [12]. The above expressions show the necessary conditions to make either the 

Fresnel or Fraunhofer approximations and how the propagation of light is modeled 

adequately by the 2-D Fourier transform. The aperture function can also be introduced into 

the equation if the source field is being propagated from the plane of an aperture such as a 

mirror or lens. The extent of the electromagnetic field is confined to the aperture, so the 

aperture function is defined as ones everywhere where the aperture exists and as zeroes 

everywhere where the aperture doesn’t exist. An example aperture function which contains 

the obscuration of a reflecting mirror is seen in Figure 2.  

 

Figure 2: Aperture Function of Parabolic Mirror Telescope 
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The Fresnel approximation will reduce to a 2-D Fourier Transform when propagating an 

optical field from the plane of an optical device such as a lens or mirror to the lens or 

mirror’s focal point which is often the setup for close distances such as the distance 

between a focusing optic and a CCD array. A phase delay term, ( , )x y , seen in Equation 

(2.9) is added to the propagating field which perfectly cancels out the Fresnel term at the 

focal point. Equation (2.10) is the source field on the other side of the optics and U3 is the 

field at the focus of the optics as shown in Equations (2.11).   

 
2 2( )

( , )
x y

x y
f

 



    (2.9)  

 

2 2( )

2 2( , ) ( , )

j x y

fU x y U x y e





 

   (2.10) 

 

2 2

2 2 2 2
2 /

2

( ' ' )
( ) ( )

3 ( , )( ', ')
j z

j x y
j x y j x yz

f z
e e

U x y
j z

U x y e e
 


 
 




  


2 (  x+ )x yj F F y

e dxdy


 


 

    (2.11) 

The human eye or any manufacturable sensor is incapable of sampling the instantaneous 

value of an oscillating light field at the Nyquist rate due to the extremely high frequencies 

on the order of 1014 Hz; therefore, the time averaged intensity, denoted as I, or time 

averaged value of the magnitude squared of the optical field, denoted as U, is the most 

insightful metric. 

 
2

0

1
( ', ') ( ', ', )

T

I x y U x y t dt
T

    (2.12) 

The measure of the spread of energy across the detector is represented by the Point Spread 

Function (PSF). In an optical system, the PSF is the impulse response, denoted as h, of the 

optical system to a point source located a far distance away. The performance of an optical 
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system is characterized by the distribution of the PSF and the PSF shape is dependent on 

the aperture geometry. The PSF, h, is normalized such that the total energy within it sums 

up to unity.   
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 ( ', ') ' ' 1h x y dx dy
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    (2.14) 

Normalizing the PSF is accomplished by the operations shown in (2.13) and (2.14), serves 

as a sort of conservation of energy and guarantees that the total energy observed in a 

detected image is equal to the total energy from the object being detected that is collected 

by the telescope. Using the convolution property from linear systems theory, the field from 

an object at the detector, denoted as O, can be convolved with the impulse response to 

show the intensity, i, which is observed by the optical system at the CCD detector in the 

coordinate plane denoted by the x’ and y’ coordinates. 

 ( ', ') = ( , ) ( ', ')i x y O q w h q x w y dqdw

 

 

     (2.15) 

As seen below, the total energy from the observed object, E, is found summing up all the 

energy distributed across the observation plane. This also shows that the OTF and PSF are 

Fourier transform pairs which comes from the underlying assumption that the optical field 

from the observed source is a plane wave.  

 ( ', ') ' 'E I x y dx dy

 

 

     (2.16) 
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Substituting the convolution of the object with the impulse response (2.15) into the 

equation for the total energy (2.16) obtains the relationship below (2.17). 

 E = ( , ) ( ', ') ' 'O q w h q x w y dqdwdx dy

   

   

       (2.17) 

rearranging the below integrals into the double integral of the object and the double integral 

of the shifted and flipped impulse response results in the integral of the object multiplied 

by 1 as seen in Equation (2.18). This result seen in Equation (2.19) implies that all the 

measured energy contained within the image formed at the observation plane is equivalent 

to the total amount of energy from the object.  

 E = ( , ) ( ', ') ' 'O q w dqdw h z x w y dx dy

   

   

       (2.18) 

 E = ( , )O q w dqdw

 
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    (2.19) 

The Optical Transfer Function (OTF), H, describes the spatial frequency response of an 

optical system and is defined as the auto-correlation of the pupil function with itself 

normalized by the total area of the pupil function squared. It is a unit-less ratio which 

describes how certain spatial frequencies are passed by the optical system. In this integral, 

u and v are spatial frequencies and f is the focal length of the pupil, P.   
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where,  

 
( , )( , ) ( , ) x yP x y A x y e   (2.21) 
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The pupil function is defined by an aperture transmittance function, A, and phase,  , 

shown above. The physical meaning of auto-correlation of the pupil is shown pictorially in 

Figure 3. As the Pupil is shifted farther away, the amount of overlap goes to zero explaining 

why the OTF goes to zero with larger spatial frequencies.  

 

Figure 3: Auto-Correlation of the Pupil Function 

One final note is that the OTF and PSF are Fourier transform pairs; the Fourier transform 

of the PSF is the OTF and the inverse Fourier transform of the OTF is the PSF.  

 

 2 ( ) 2 ( )( , ) ( , )    &   ( , ) ( , )j ux vy j ux vyH u v h x y e dxdy h x y H u v e dudv 

   

  

   

       (2.22) 

Non-Paraxial PSF Generation  

The goal of this research effort is to be able determine if an object is a NEO or not and it 

is hypothesized that distant objects such as stars will not have any detectable tilt aberrations 

by any observation equipment on Earth. This is because the phase-front from a star will be 

flat across very large distances. Parallax is detected by measuring the tilt aberration in a 

phase-front that is not flat across the aperture of an observing telescope. Although GEO 
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objects have a limited amount of phase-front curvature, even massive telescopes would not 

be able to detect any parallax. An experimental setup to test this hypothesis is to utilize a 

reference telescope pointed directly at the detected object and secondary telescope pointed 

straight up to detect any parallax effects in the phase-front as seen in Figure 4. Such a set-

up will allow the necessarily large baseline differences to detect parallax from NEO 

observations.  

 

Figure 4: Visual Depiction of Telescope Arrangement for Parallax Detection 

Using the Fraunhofer approximation (2.7), this phase from a distant but not infinitely far 

off object is propagated to a plane which contains both the reference telescope and the 

parallax sensing telescope. If there is curvature in the phase of an observed object across 

the telescope aperture, the resulting PSF will not be located at the center of the CCD due 

to the tilt aberrations in the phase. Because the object is so far away, it can be approximated 

as a point source and the field in the source plane is an impulse function represented 

mathematically by the dirac function. The integrand in the Fraunhofer approximation 

integrates to one and only the term outside the integral remains as seen in (2.23).  
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Now that the field in the plane of the two telescopes has been obtained, the PSF’s from 

each telescope need to be generated. Due to the small distance between the aperture and 

the CCD planes, the Fresnel approximation will be utilized. For the reference telescope, 

the PSF is the Fourier Transform of the aperture located at the center of the CCD array 

behind the telescope. This occurs due to the quadratic term in the integrand for the Fresnel 

propagator being canceled out by the phase delay of the lens as it is known that the PSF 

will be at the focal point at the center of the CCD. However, this is not the case for the 

parallax sensing telescope and special considerations will need to be taken to generate its 

PSF [13], [14].  A new coordinate system is created centered on where the PSF should be 

located as predicted by geometric optics as seen in Figure 5.  

 

Figure 5: New Coordinate System for Non-Paraxial Propagation [13] 

With this change of coordinate system, the Fresnel approximation needs to be modified. 

The first step is to change the R12 term seen in (2.3) needs to be modified. The x and y 
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coordinates in the CCD plane have been shifted away from the optical axis to a point 

centered at ( ,y )c cx  and R12 is changed as seen in (2.24) where xd and yd are deviations 

from the center point.  
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where,  

 x''  is substituted with x  and y''  is substituted with  yc d c dx y    (2.25) 

 

Now, the binomial approximation can be made in the new coordinate system which will 

create a hybrid propagator to create a non-paraxial PSF.  
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here,  

 '  is substituted with x  and y'-y  is substituted with c s c sx x y  (2.27) 

As seen below, R12 has been re-written in terms of the new coordinate system and the term 

inside the square root is expanded to re-arrange the terms simplifying the binomial 

approximation.   

 2 2 2 2 2

12 2 2s d s d s d s dR z x x x x y y y y         (2.28) 

 2 2 2
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where,  

 2 2 2 2

0 ( , )s s s sR x y z x y     (2.30) 

Equation (2.29) is re-arranged as seen in Equation (2.31) to get the expression into a form 

where, as is done for the Fresnel approximation [12], the binomial expansion of the square 

root term can be taken.  
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To make (2.31) fit the form required to take the binomial expansion, the distance to the 

point of interest is factored out as seen in Equation (2.32).  

 
 2 2

12 0 2 2

0 0

2( )
( , ) 1

( , ) ( , )

d d s d s d
s s

s s s s

x y x x y y
R R x y

R x y R x y

 
     (2.32) 

Equation (2.33) is the first two terms of the binomial approximation of R12 from (2.32) in 

the non-paraxial case. This is different than the R12 term used in the paraxial Fresnel 

propagator because the 0 ( , )s sR x y , term which replaced z contains information about 

where in the CCD the PSF is being generated at.  
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This propagator replaces the z term in the Rayleigh-Sommerfeld propagator (2.1) with R12, 

shown in Equation (2.34), which has been derived for a non-paraxial position [13].   
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This propagation tool can be simplified if the term resembling the quadratic term can be 

neglected. As shown below, this term is always less than the quadratic term from the 

original propagator because 0 ( , )s sR x y  is always smaller than z; thus, the Fraunhofer 

approximation condition must be met for this term to be neglected or a lens must be utilized 

to cancel this quadratic phase term.  
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if 
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As mentioned in the previous section, the Fraunhofer propagation can be modeled as a 

Fourier Transform. The expression above still has 0 ( , )s sR x y  which is a function of the 

differential elements in the integral; 0 ( , )s sR x y  can be approximated as z if the radius of 

the resulting non-paraxial PSF, nmax, is smaller than the F# squared in units of Nyquist 

pixels [13], [14]. For the purposes of this paper, the PSF radius will be taken as the radius 

which creates a circle bounding 85-90% of the PSF energy. In this case, the expression is 

in the form of a Fourier Transform and the remaining 0 ( , )s sR x y  term contains the phase 

aberrations to propagate the off-axis PSF within the validity regions.  
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Effects of the Atmosphere  

In the absence of the earth’s atmosphere, the wave-fronts arriving from distant space 

objects such as stars or NEO’s appear to be flat and the resulting PSF takes the form an 

airy disk, for a circular aperture. The performance of such an optical system is severely 

impacted by the random fluctuations of the atmosphere. This atmospheric turbulence 

causes random changes to the optical index of refraction which is both a function of space 

and time shifting the wave-front both spatially and temporally as it passes through the 

medium. These shifts cause the wave-front to have varying optical delays dependent on the 

paths taken through the medium resulting in a perturbed wave-front. The apparent 

twinkling of stars in the night sky result from this physical phenomenon. The resulting 

image seen at the detector is no longer a clear PSF and its nature depends on the exposure 

time of the system. Figure 6 demonstrates the effects of a turbulent atmosphere on an 

incident plane wave. 

 

Figure 6: Effects of Atmospheric Turbulence on Plane Waves [15] 
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Kolmogorov was a Russian mathematician whose studies included modeling the statistics 

of a turbulent atmosphere. The Kolmogorov turbulence model assumes that perturbations 

to a wave front by the turbulent atmosphere are caused by fluctuations of the index of 

refraction of the atmosphere. In this way, the phase structure function is related to the 

optical delay different rays of light experience on different paths to the aperture through 

the atmosphere. Multiple rays arrive at different locations in the aperture from multiple 

paths and there is a correlation relating the optical delay time the different rays experience. 

Kolmogorov related the statistical model for the density of the atmosphere, as based on 

random fluctuations in temperature, directly to the index of refraction of the atmosphere. 

Kolmogorov’s theories model temperature as a Wide Sense Stationary (WSS) Random 

Process. Index of refraction and density have a linear relationship. The statistics from 

thermal models of the atmosphere give rise to density as some function of temperature 

which gives rise to some statistical model of the index of refraction of the atmosphere.  The 

phase delay, 1 1( , )x y , one ray experiences to a point, (x1,y1), in the aperture can be 

represented by the below equation where n   is a fluctuation in the index of refraction from 

some mean value, no. 

1 1 1 1

0

2
( , ) ( , )

z

x y n x y dz





       (2.39) 

The index of refraction is a random number because there is a random temperature field in 

the atmosphere; it is modeled as a Gaussian random number that never goes below 1. 

Because the Gaussian Probability Distribution Function (PDF) has a tail which goes below 

1, this model looks at the difference in phase between two points in the aperture separated 

by a distance, r, from each other. The structure function, Ds, is the expected value of this 
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phase difference squared and is a function of the difference between the two x and y 

coordinate locations, &x y  . 

  
2

1 1 2 2( , ) ( , ) ( , )sD x y E x y x y     
  

    (2.40) 

   1 1 2 2 1 1 2 2( , ) ( , ) ( , ) ( , ) ( , )sD x y E x y x y x y x y              (2.41) 

After expanding the expression, the expectation can be taken onto each of the terms which 

results difference of the correlation of the phase at the same point and between two points. 

Because the correlation, R , is only a function of the separation of the two points, this is 

said to be spatially WSS. 

        1 1 2 2 1 1 2 2 2 2 1 1
2 2( , ) , , ( , ) ( , ) ( , ) ( , )s E E E ED x y x y x y x y x y x y x y           

      
  (2.42) 

  ( , ) 2 (0,0) ( , )sD x y R R x y           (2.43) 

Substituting the expression for the phase delay at a given point in terms of the fluctuations 

of the atmosphere, n , into the above expectation math starts a rigorous mathematical 

derivation of Kolmogorov’s structure function of the atmosphere. 

  

2

2

1 1 2 2 1 1 2 2

0

2
( , ) ( , ) ( , ) ( , )

z

E x y x y E n x y n x y dz


 


  
       

      
   

    (2.44) 

An expression for the structure function in terms of the auto-correlation of the index of 

refraction is developed as shown in Equation (2.45) where z’ and z’’ are two different paths 

to two points in the aperture, r is the separation between two points in the aperture plane 

found by computing the hypotenuse between points with a vertical separation of x  and a 

horizontal separation of y  and Rn is the auto-correlation function.   
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( , ) 2 ( ' '') 2 ( ( ' '') ' ''

z z

s n nD x y R z z R r z z dz dz




 
       

   
   (2.45) 

where,  

 2 2r x y     (2.46) 

Kolmogorov only defined the Power Spectral Density (PSD) of the index of refraction. 

Normally, the auto-correlation function can be determined by taking the inverse Fourier 

transform of the PSD, but Kolmogorov’s PSD has a discontinuity at zero frequency; auto-

correlation function cannot be computed due to this. The expression can be put in terms of 

the structure function by adding and subtracting twice the auto-correlation function with 

zero shift.   

 
2

2 2

0 0

2
( , ) 2 (0,0) 2 ( ' '') 2 (0,0) 2 ( ( ' '') ' ''

z z

s n n n nD x y R R z z R R r z z dz dz




 
          

   
  (2.47) 

 
2

2 2

0 0

2
( , ) 2 ( ' '') 2 ( ( ' '') ' ''

z z

s n nD x y D z z D r z z dz dz




 
        

   
   (2.48) 

 
2

2 2

0 0

2
( , ) 2 ( ' '') 2 ( ( ' '') ' ''

z z

s n nD x y D z z D r z z dz dz




 
        

   
   (2.49) 

where,  

 
2

2 3( ) (0,0)n nD r C r      (2.50) 

As defined, ( )nD r  is related to the variance of the fluctuation of the index of refraction, n , 

multiplied by the separation between two points of interest in the aperture to the two thirds 

power. (0,0)nC  is the variance of the index of refraction and 2 (0,0)nC  is the auto-correlation 

function at zero shift. During the period, this relationship for the structure function of the 

atmospheric turbulence was developed, computers weren’t powerful enough to evaluate 
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the above integral and further mathematical derivations resulted the numerical expression 

below. In this expression, r is the separation between two points in the aperture plane (2.46) 

and r0 is Fried’s seeing parameter. 

 

5
3

0

( ) 6.88s

r
D r

r

 
  

 
     (2.51) 

The seeing parameter is an indication of how much the paths to a point in an aperture can 

be separated. For separations smaller than r0, the structure function becomes close to zero 

because a small number squared is a smaller number. For separations larger than r0, the 

structure function becomes large. The value which r0 takes on will determine how much of 

a factor the turbulence of the atmosphere plays in the performance of the optical system. 

Average Optical Transfer Function  

From the above description, the source field is assumed to be a plane wave until it is 

perturbed by the random fluctuations of the atmosphere’s index of refraction. The phase 

term in the pupil function is altered by the atmosphere and this alteration is described 

mathematically by the Zernike phase screens [16]. The goal is to find an expression for the 

expected value of the OTF as a function of the of the random Zernike phase screens. 

Physically speaking, this is a form of long exposure imaging which many surveillance 

instruments utilize currently [9], [11]. We define the average transfer function, E[H(u,v)], 

of the system as the expected value of the OTF. 

 

*

2

( , ) ( , )

[ ( , )]

( , )

P x y P x fu y fv dxdy

E H u v E

P x y dxdy

 

 

 

 

 

 
  
 

  
 
 
  

 

 

  (2.52) 
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In the case being explored, the denominator is assumed to be a number which normalizes 

the OTF; this is because only the phase is random and the amplitude is not considered to 

be a random quantity. This allows the expectation to be taken on the numerator only since 

expectation is a linear operator. If the numerator were also a random quantity, it would 

undoubtedly have some correlation to the numerator and this step could not be taken. The 

random phase effects are in the numerator of this expression. 

 

*

2

( , ) ( , )

[ ( , )] ( , )

( , )

E P x y P x fu y fv dxdy

E H u v H u v

P x y dxdy

 

 

 

 

 

 
  
 
 

 

 

 

  (2.53) 

For the next several steps towards finding an expression for the expectation of the OTF, 

the denominator will be left out while keeping in mind that it needs to be added back later. 

The numerator is re-written in terms of the amplitude and phase of the pupil function while 

keeping in mind that the phase,  , is represented by the Zernike phase screens. 

 ( , ) * ( , )[ ( , )]  ( , ) ( , )j x y j x fu y fvE H u v E A x y e A x fu y fv e dxdy   

 

   

 

 
  
 
 
    (2.54) 

Noting that the amplitude is not random, the numerator of the OTF is re-arranged, gathering 

the amplitude and phase terms together; this is valid when a single phase screen is used to 

represent the OTF. The expectation is brought past the amplitude expression onto the phase 

expression. To find the statistical representation of the average transfer function, the 

expectation of the phase expression must be resolved. Henceforward, the derivation will 

be geared towards finding this expectation and the result will be put back into the integral 

later. 
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 * ( , ) ( , )[ ( , )]  ( , ) ( , ) j x y j x fu y fvE H u v A x y A x fu y fv E e e dxdy   

 

   

 

  
      (2.55) 

 [ ( , ) ( , )][ ( , )]  E j x y x fu y fvE H u v e       
  

  (2.56) 

A non-random number multiplied by a Gaussian random number becomes a Gaussian 

random number and the difference of two Gaussian random numbers is also Gaussian 

random number; thus, ( , )x y  is a Gaussian random number and ( , ) ( , )x y x fu y fv      

is a Gaussian random number. Looking specifically at difference between the phase term 

at a point and the phase term at a shifted point, we define a Gaussian random number, 

( , )fu fv  . Because this Gaussian random number is a function of a spatial difference only, 

it is Wide Sense Stationary spatially. 

 ( , ) ( , ) ( , )fu fv x y x fu y fv           (2.57) 

Taking the expectation of this expression, it is noted that this expectation is in a form very 

similar to that of the characteristic function, ( )uM w , as by Goodman [17].The expectation 

of this expression can be more easily solved using the characteristic function where u  is 

the mean, w is the frequency variable in the Fourier transform, and 2 is the variance.   

 ( , )[ ( , )]  E j fu fvE H u v e    
  

  (2.58) 

 

2 2

2
[ ] ( )

w
jwu

jwu
uE e M w e

 
 

      (2.59) 

The characteristic function is like the Fourier transform of the Probability Distribution 

Function (PDF) being evaluated at various w values. In this case, all the values of w are not 

meaningful and the key to solving this expectation is setting w equal to 1. Remembering 
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that the Gaussian random numbers were zero mean, 0u  , with w equal to 1, the 

characteristic function, Mu( w ), is shown below. 

 

2

2( )uM w e



   (2.60) 

Next, the variance of ( , )fu fv  , 2 , needs to be computed. The variance is just the 

expected value of delta squared, 2E  
 

, due to the mean of the Gaussian random number 

being zero. This expectation is computed below. 

   2 2 ( , ) ( , ) ( , ) ( , )E E x y x fu y fv x y x fu y fv    
            

   
  (2.61) 

 2 2 2
( , ) ( , ) ( , ) ( , ) ( , ) ( , )E x y E x fu y fv E x y x fu y fv E x fu y fv x y                             

         
  (2.62) 

These expectations are the correlations of the phase screen with itself where 2
( , )E x y 

  
and 

2
( , )E x fu y fv    

  
 is the correlation of the phase screen with zero shift, (0,0)R and  

( , ) ( , )E x y x fu y fv     
   and ( , ) ( , )E x fu y fv x y     

  is the correlation of the phase screen 

with a shift, ( , )R fu fv  . The variance can be rearranged in terms of the correlation 

functions. 

  2( , ) ( , ) 2 (0,0) ( , )D fu fv fu fv R R fu fv              (2.63) 

( , )D fu fv   is the structure function for this random process; the characteristic function 

can be written in terms of the structure function. It is noted that the form of this random 

process is the same as that of Kolmogorov’s structure function for the atmosphere. This 

expression can be substituted into the relationship for the average transfer function. 
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

 

     (2.65) 

The characteristic function of the atmospheric phase term, sH , is not a function of the 

integration variables and can be pulled outside the integral. The average transfer function 

is re-written with this term factored out and with the normalization factor in the 

denominator. 
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  (2.66) 

where,  

 
( , )

2

D fu fv

sH e

 

   (2.67) 

The term on the left of the average transfer function expression is the transfer function of 

a perfect pupil with no phase error. This term will be defined as oH ; thus, the average 

transfer function is the transfer function of the telescope multiplied by the transfer function 

of the atmosphere. As noted before, the transfer function of the atmosphere is completely 

dependent on the auto-correlation of the atmospheric phase term. The expectation of the 

optical transfer function is thus o sH H . The atmosphere has a specific phase structure 

function, Ds, as defined by Kolmogorov which can be substituted directly with ( , )D fu fv 

in the equation for sH  [17]. 

 
( )

2( , )
sD fr

sH u v e




   (2.68) 
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 
 
 
    (2.69) 

The transfer function of the atmosphere is only dependent on the spatial frequencies, the 

seeing parameter, the focal length of the optical system and the average wavelength. From 

this expression, when the structure function becomes large, the transfer function goes to 

zero and when the structure function becomes small, the transfer function is maximized. 

The structure function depends on the distance between two points in the aperture and the 

seeing parameter; thus, the size of the telescope as compared to the seeing parameter 

determines the effect of the atmosphere on the optical system’s performance.  

Photon Counting Noise  

Physical hardware being used in an experiment registers objects by detecting photons from 

that object. An object may be viewed as an optical source producing N photons which can 

go anywhere for all time. The individual photon arrivals are assumed to be statistically 

independent and identically distributed. A binomial distribution may be used to model K 

photon arrivals at the detector during a finite time given N total photons produced over all 

time by the source. A binomial distribution is typically used to compute K successes in N 

trials. The camera will only be integrating during a finite amount of time and Ps is the 

expected number of photon arrivals at the detector during that finite time divided by the 

total number of photons, N. The expected number of photons is found by integrating the 

rate function, ( )t , in units of photons per second during the time the camera is integrating. 

Ps can be thought of as the percentage of photons arriving at the detector during the 

integration time, t2-t1. 
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where,  
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    (2.71) 

Due to Heisenberg’s uncertainty principle, the arrival time of a photon at a detector cannot 

be predicted perfectly. This lack of knowledge regarding the photon’s arrival statistics 

creates noise called photon counting noise. The expression for Pr(K) needs to be modified 

because there is no way to know how many photons, in total, are emitted by the source. 

The key to determining the expression for Pr(K) comes from Goodman [17]; we take the 

limit of Pr(K) as the total number of photons, N, goes to infinity. 
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Calculus tells us that when taking the limit of a multiplicative expression, that it’s limit is 

the same as the multiplicative factors limits being multiplied together. To make the 

derivation more straightforward, the expression is broken apart into two separate parts and 

the limit as N goes to infinity is taken. 
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The factorials in the left expression are expanded and all of the terms in the denominator 

cancel all of the terms in the numerator with the exception of the first N(N-1)…(N-K+1) 

terms. This expression can be expanded into a polynomial using algebra. 
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where,  

 1 2 0
1 2( 1)...( 1) ...K K K

KN N N K N C N C N C N         (2.75) 

The NK term in the denominator comes from Ps and taking the limit of the polynomial in 

the numerator divided by NK  goes to 1 in the limit where N goes to infinity. 
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Next, the limit as N goes to infinity of the second expression is taken. Because N is much 

bigger than K, the K term is dropped from the exponential. An exponent rule, shown below, 

demonstrates that that this limit becomes an exponential with x being negative the integral 

of the rate function during the integration time.  
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The two terms can be combined to come up with the resultant form of the expression. The 

final expression seen below is that of a Poisson distribution. This proof shows that given 

the assumptions that our source emits a very large number of photons, the expected number 

of photon arrivals, K, at the detector follows a Poisson distribution.  
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The number of expected photon arrivals from an observation will be computed using a 

magnitude scale and the background photons will be selected to achieve desired SNR 

values.  Based on these derivations for photon arrivals, it is assumed that the distribution 

of the noise for the observations in this experiment will follow a Poisson distribution.  

Decomposing Aberrations into Zernike Polynomial Bases  

The effect of parallax on an optical system manifests itself in the form of detectable 

aberrations to the phase which alters the spatial distribution of that system’s PSF. In the 

case being explored, the parallax sensing telescope’s PSF will differ from the reference 

telescope PSF or the parallax sensing telescope’s PSF when observing a star due to these 

aberrations. The changes to the PSF may not be easily distinguishable due to multiple 

aberrations superimposing effect the total PSF. A useful way to quantify these changes to 

the PSF’s spatial distribution is using Zernike polynomials to decompose the aberrations 

into an orthogonal bases set.  
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Figure 7: First Six Zernike Polynomials 

The use of the Zernike polynomial is convenient because these polynomials form an 

orthonormal basis set over a unit circle and the telescope aperture is radially symmetric. 

The phase, ( , )x y , of the wave-front may be represented by a superposition of these 

Zernike polynomials, NZ , multiplied by the corresponding weighting factors, Na . 

 1 1 2 2( , ) ( , ) ( , ) ... ( , )N Nx y a Z x y a Z x y a Z x y          (2.84) 

The Zernike coefficient weighting factors can be computed by taking area under the inner 

product between the total phase and the Zernike polynomial of interest and normalizing it 
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by the area under the aperture function multiplied by the Zernike polynomial squared. 

       

 
2

( , ) ( , )

( , )

i

i

i

Z x y x y dxdy
a

Z A x y dxdy









  (2.85) 

These coefficients will be useful to represent the parallax effect in terms of distinct optical 

aberrations to the phase at the CCD array. The tilt aberration, which is decomposed into 

2Z  and 3Z , will cause the PSF as seen in the parallax sensing telescope to be in a different 

horizontal and vertical geometric position as compared to the PSF of the reference 

telescope. The phase at the pupil of the parallax sensing telescope will be used to quantify 

the magnitude of the parallax effect; the tilt aberration weighting coefficients 2a  or 3a  will 

be larger in magnitude as the distance between the two telescopes increases. The geometric 

optics setup to induce tilt into an optical system is seen in Figure 8 and Figure 9 shows the 

Zernike polynomial representation of tilt.  

 

Figure 8: Physical Cause of Tilt Aberration [18] 
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Figure 9: Tilt Aberration as Described by a3 Zernike Polynomial 

The pupil function, ( , )P x y can also be represented using the superposition of Zernike 

polynomials as seen below [12], [11] where ( , )A x y  is the aperture transmittance function 

and  ( , )x y  is the phase at the aperture as described by a weighted superposition of Zernike 

polynomials as seen in (2.84). 

 
( , )( , ) ( , ) j x yP x y A x y e     (2.86) 

 

 

 

 

 

 

 



www.manaraa.com

35 

III. Detection Algorithm Methodology     

This chapter shows the formulation of the PD and CD algorithms used for space object 

detection which are currently being used by ground based optical sensors and shows the 

formulation for the CD MHT algorithm developed by Zingarelli [10], [11] previously. A 

new CD MHT algorithm for detecting a target and categorizing that target as either a stellar 

or NEO observation in a single data frame is derived for scenarios where the optical system 

consists of identical or different telescopes separated by a given baseline. Useful 

performance metrics are derived to quantify the performance of the new algorithm in terms 

of statistical probabilities.    

Point Detection  

Different detection schemes are used by ground based electro-optic sensors to search for 

space objects. The ideal detection scheme is related to the exposure time of the sensor 

because moving objects will appear to be streaks if the sensor integration time is longer. If 

the exposure time is short enough or the telescope mount is moving at a rate consistent 

with objects in a particular orbit, moving objects or stars will not form streaks on the CCD 

detector and such observations can be treated as point sources [10], [11]. Because 

geostationary objects do not move, they can also be treated as point sources. The detection 

scheme known as a point detector (PD), is utilized to determine whether a given pixel has 

a detection or background present. For the derivation of this method, two hypotheses are 

considered; the hypothesis that a pixel contains a detection, H1, and the hypothesis that a 

pixel contains background, H0. These binary hypotheses are divided, former by the latter, 

to form a ratio called the Likelihood Ratio Test (LRT). A statistical model for the two data 
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sets must be determined to formulate a mathematical model for this test; in the context of 

this paper, it is assumed that the data takes on a Gaussian distribution [10], [11]. The 

Probability Distribution Function (PDF) of which is seen in (3.1) where d is the data, m is 

the mean of the Gaussian data and 2  is the variance of the Gaussian data. 

 
2 2( ) /2

2

1
( )

2

d m

DP d e 



    (3.1) 

The data being observed through a telescope exists in every pixel of a CCD and this data 

will have a mean and standard deviation which is dependent on a region around that pixel. 

For H1, the mean is the signal strength of the object in that pixel, S, plus the background, 

B, and for H0, the mean is just the background, B. Shown below is the representation for 

the mean with an object present (3.2) and with background present (3.3).   

 
1Hm S B    (3.2) 

 
0Hm B   (3.3) 

The LRT is set up by making a ratio of the two Gaussian PDF’s with different means. The 

goal is to find a threshold,  , which can be used to determine if a detection is present in 

the data being tested. The LRT is seen below (3.4). 
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The above expression is expanded and simplified to produce a more concise expression 

(3.5).  
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The ratio is compared to a threshold,  , of 1 because any result greater than 1 will indicate 

that the probability of H1 occurring is greater than the probability of H0 occurring and vice 

versa.  
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  (3.6) 

The limitation exists that the signal level of some object, S, is not known a-priori so it’s 

presence in the LRT creates a problem. Because the threshold was set equal to 1, the natural 

log of both sides can be taken to change the exponential function into a ratio.  

   

  
2 22 ( ) /2ln ln(1)S d B Se       (3.7) 
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If the data under the H0 hypothesis is Gaussian, subtracting B from d produces a zero-mean 

random number and then dividing that zero-mean random number by its standard deviation 

transforms that number into a Gaussian random number with a unit standard deviation. 

This is also called a normal random variable whose probability can be computed using 

tables for such distributions. The threshold,  , can be set to some number of standard 

deviations to provide a desired false alarm probability based on the tables. For example, 

setting   equal to 6 results in a false alarm probability of 10-9 for 1 pixel. An SNR higher 

than 6 is used for the threshold of detection for SST observations [11]. Also convenient is 

that the expression is equivalent to the Signal to Noise Ratio (SNR) of the pixel from 

dividing the signal by its noise. 
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  (3.11) 

Correlation Detection  

An extension to the LRT is using Correlation Detection (CD) which can also be thought of 

as a matched filter [11]. Previously, the LRT detected whether an object was present in 

each pixel by testing every pixel against the LRT ratio using the local mean and standard 

deviation of a data set. CD looks at the ratio of probabilities given the statistics of the entire 

data set within some window. The PDF is like the one used before, but now it represents a 

frame of data rather than one pixel. This method should be more perceptive than the point 

detector because it can compare a whole distribution of data.  
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The probability of the data being used to compute the PDF at each pixel is multiplied 

together over the entire widow where N is the total number of pixels in the x or y direction.  

The mean given the H1, 
1Hm , case is now altered by multiplying the signal strength, S, by 

the Point Spread Function (PSF), h(x,y), of the expected object and the mean given the H0, 

0Hm , case is the same as before. The equations below show the representation for the mean 

with an object present and without an object present. 

 
1

( , )Hm S h x y B      (3.13) 

 
0Hm B   (3.14) 

A ratio of the two PDFs is made; again, the goal is to find a threshold,  , which can be 

used to determine if a whole window of observed data has an object, H1, or doesn’t have 

an object present, H0. The division of the PDF’s is seen below. 
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This expression will be mathematically manipulated into the form of a correlation rather 

than a ratio and compared to a threshold. All the algebraic steps are the same as before with 

the only difference being that S became S multiplied by the PSF and that data in the whole 

window is being multiplied together. The exponential terms are expanded, eliminated and 

re-combined simplifying the expression.  
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The new expression used for correlation detection LRT is very similar to the expression 

for the point detector LRT just and as before, the threshold,  , is set equal to 1 because a 

result greater than 1 will mean the hypothesis given an object is present, H1, is more likely 

and a result less than 1 will mean that the hypothesis given there is no object present, H0, 

is more likely. The natural log of the CD LRT is taken resulting in the natural log of the 

CD ratio on the left and of the threshold on the right. One of the properties of a logarithmic 

base is that the log of a product becomes sums. Taking the natural log of a product of 

exponents gets rid of the exponential base and changes the products to sums as seen below.  
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The expression which relies on the unknown signal, S, is moved to the right-hand side and 

the signal is divided out of the left-hand side of the expression. This eliminates the reliance 

within the CD test on the signal strength, S, of an observed object.  
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As before, the resulting expression is analogous to the SNR. The operation in the left-hand 

side of (3.19) is taking the PSF and data grid, multiplying them together and summing up 

the product which is correlation. (3.19) is put in terms of a correlation of the data in a 

window with an expected PSF in (2.20).  
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To come up with an expression for the CD which follows a normal Gaussian distribution, 

the CD needs to be divided by its standard deviation. The variance of the LRT is the 

expected value of the of the LRT squared.   
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There are two cases in the above sum, one where the terms in the sum are equal, x1=x2 and 

y1=y2, and one where they are all different. In the latter case, the data and background are 

statistically independent, and the expectation of the product becomes the product of the 

expectations. Because the background data, B, has a zero mean, the term is multiplied by 

zero. The only remaining terms are the second case when x1=x2 and y1=y2 in the sums [11].  
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The resulting expression contains the expectation of the data minus the background squared 

which is, by definition, the variance. The standard deviation,  , is computed by taking 

the square root of the computed variance.  
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The LRT expression for the CD is divided by its standard deviation resulting in a zero-

mean unit variance random variable. The expression is now a ratio of the signal divided by 

the noise; thus, normalized in terms of SNR. The expression can be compared to the 

threshold which is again set to be some number of standard deviations allowing probability 

of false alarm to be minimized based on tables. The right-hand side of the expression for 

the SNR is set to be the threshold,  . 
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If the PSF were taken to be a delta function, the SNR expression reduces to the same 

expression derived for the PD LRT case and the two cased can be directly compared to 

each other to determine which method is superior; the method resulting in the highest SNR 

has the highest performance [11].  

Multi-Hypothesis Test  

Using the model for the CD, the implementation of the Multi-Hypothesis Test (MHT) 

detector is straightforward. Because every optical system is unique, different system 

configurations will result in a unique spatial distribution of that system’s PSF. The parallax 

effect will be manifested in more pronounced tilt aberrations which will both move the 

location of and change the shape of the PSF. The hypothesis corresponding to an observed 

window of data will be distinguishable when input into the CD LRT with the appropriate 

PSF used in the correlator. Multiple hypotheses, iH , are defined by setting the ith PSF, 

hi(x,y), expected by a given optical system under the a priori condition that said hypothesis 

has occurred.  
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If the data being tested does not correspond to the optical system hypothesized, the 

outputs of the CD LRT will be lower than when hypothesizing the correct optical system 

[10]. The hypothesized PSF is correlated with the data in a test window using the CD 

scheme and the hypothesis which results in the highest SNR value is most likely the case 

being observed. The three hypotheses explored in this text are 1) the null hypothesis that 

a space object has not been detected in a given frame of data ( 0H ), 2) the hypothesis that 

an object has been detected in a given frame of data and that object is a NEO ( 1H ) and 3) 

the hypothesis that an object has been detected in a given frame of data and that object is 

a stellar object ( 2H ). The above SNR computation would be feasible to determine which 

of these hypotheses were most valid given an observed data frame if the tilt aberrations 

were observable using a single telescope. However, the parallax effect is not pronounced 

with only one telescope pointed straight at a NEO due to the phase appearing to be flat 

across a limited size aperture. A method will be devised using a system of two telescopes, 

geometric optics and the non-paraxial PSF generation tool.  
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MHT Derivation for Two Telescopes  

To detect the tilt aberrations caused by parallax, a system of two telescopes making 

simultaneous observations from different locations is utilized. The separation between the 

two telescopes is henceforward referred to as the baseline difference; with different 

baselines, the tilt aberrations effect on the parallax sensing telescope should become more 

apparent and thus, more detectable with a MHT detection scheme. Recall that for NEO’s, 

there will be detectable tilt aberrations and for stellar objects, there will not be detectable 

tilt aberrations due to the radius of curvature of each respective observation’s emanating 

electromagnetic field. To derive the LRT, the joint probability density function of the two 

telescopes will be utilized; because the telescopes are geographically separated systems, it 

is assumed that their independently collected data is also independently distributed. The 

joint probability density function of two independent random variables becomes the 

product of the two marginal probability density functions [17].   

 

 1 2 1 2( ( , ) ( , )) ( ( , )) ( ( , ))P d x y d x y P d x y P d x y     (3.30) 

 

Experimentation will utilize data collected from the SST and Naval Observatory 

astronomical telescopes. The respective PSFs will be properly registered with the Naval 

Observatory serving as the reference telescope and the SST as the parallax sensing 

telescope. Per previous research which utilized SST, the data will be assumed to follow a 

Gaussian distribution [11]. Seen below is the marginal, Gaussian probability density 

functions, 
1DP  and 

2DP , for the reference and parallax sensing telescopes respectively.  
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where,  

 ( , )
iH im S h x y B     (3.32) 

 
0Hm B   (3.33) 

The LRT,  , is formed by taking the ratio of the product of these two distributions given 

the condition that an observation is present in the data, 1H , in the numerator and the 

condition that an observation is not present the data, 0H , in the denominator. Because the 

parallax sensing telescope is pointed straight up rather than directly at an observation, tilt 

aberrations will affect the distribution of its PSF dependent on whether a stellar object or 

NEO object is being observed. The test PSFs will be defined as ( , )refh x y  for the reference 

PSF, ( , )starh x y  for stellar observations and as ( , )NEOh x y  for NEO’s. Geometric optics and 

the non-paraxial PSF generation tool will be used to compute ( , )starh x y  and ( , )NEOh x y ; 

the PSF when observing stars will be identical to the reference telescope’s PSF, ( , )refh x y  

due to the absence of significant tilt aberrations. There are now two hypotheses given an 

observation in a frame of data which are the hypothesis that an object has been detected in 

a given frame of data and that object is a NEO, ( 1H ), and the hypothesis that an object has 

been detected in a given frame of data and that object is a stellar object, ( 2H ). The null 

hypothesis, ( 0H ), is the hypothesis that no object is observed and the frame or pixel only 

contains background data. There are two distinct LRT’s of which 1( )frame  computes a 

value under the 1H  hypothesis and 2 ( )frame  computes a value under the 2 ( )H frame  
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hypothesis. Both LRT’s are computed for a given frame and the difference between those 

two LRT’s is be taken to determine whether an observation is most likely a star or a NEO.   
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  (3.36) 

Before the MHT algorithm is simplified, it is important to note that this detection scheme 

will work for systems of astronomical telescopes with the same or different telescopes. 

This is useful because the USAF SSN consists of a variety of astronomical telescope assets 

and the experiment will utilize simultaneous data taken from differing telescope systems. 

The simulations will be run for both a system of identical telescopes and the experiment 

will be with a system of different telescopes.  

CD MHT with Identical Telescopes 

Additional simplifications are made possible by using the same telescope system for the 

reference and parallax sensing telescopes.  First, the LRT for an optical system using the 

same telescopes for the reference and parallax sensing telescope will be derived. The first 

step is to take the natural log of both sides of the expression which changes the products to 

sums and allows for several cancellations of terms. 
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If both optical systems are the same, they could have nearly the same standard deviation 

and signal intensity on the CDD array which would simplify the expression into a more 

manageable form. This would only be valid when S1 and S2 as well as 1  and 2  can be 

approximated as equivalent to each other. 
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As with the CD test, the expression which is reliant on the signal strength and PSF only is 

moved to the right-hand side of the expression and the intensity, S, can be factored out of 

the both sides and divided out of the left-hand side.  
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This results in an expression for the LRT which is the correlation of the data observed by 

the reference telescope, 1( , )d x y , with the reference telescope PSF, ( , )refh x y , added to 

the correlation of the data observed by the parallax sensing telescope, 2 ( , )d x y ,  with the 

PSF of the parallax sensing telescope PSF, ( , )ih x y . 
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  (3.45) 

Given an observed frame of data, the presence of a target can be distinguished, and the 

detected object can be categorized as either a NEO or stellar object.  

Table 1: Categorization of Observations with LRT's 

MHT Conditions Categorization 

1 1 2   and         Target present is a NEO 

2 2 1   and         Target present is a stellar object 

1 2   and         No target is present 

 

The expected value of the   squared, 
2[ ]E  , can be computed to find the variance of the 

sum of the two correlations, 2  . Using this variance,  , can be made into a SNR 

relationship by dividing it by the square root of the variance, the standard deviation of the 

expression.  
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  (3.47) 

Equation (3.47) is almost the same expression as the one which resulted for the derivation 

of the CD SNR expression but with the addition of a cross-term between the reference and 

parallax telescopes. The expectation operator distributes to each of the terms in the brackets 

and as before. 
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  (3.48) 

 Again, there are two cases for each of the above quadruple sums, one where the terms in 

the sum are equal, i jx x  and i jy y , and one where they are all different, i jx x  and 

i jy y . Depending on the luminosity of the target, the distribution of the variance of the 

data depends on which noise source dominates. The noise can either be dominated by 

random photon arrivals and follow a Poisson distribution or it can be dominated by readout 

noise and take on a Gaussian distribution. For the SST, the background noise will be 

dominated by CCD readout noise which is Gaussian [10]. SSN sensors are configured to 
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operate at set PFA values, and for this reason, the null hypothesis, 0H , is used to find the 

variance of the LRT so that thresholds can be set to achieve a desired PFA. This is later 

shown in Equation (3.69). 
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  (3.49) 

Every pixel in the data frame is statistically independent from all the others when the terms 

in the summation are not the same, i jx x  and i jy y . The quantity ( , )i i i id x y B  is a 

zero-mean Gaussian random number; thus, the expected value of this quantity, 

[ ( , ) ]i i i iE d x y B , is zero and all such terms are eliminated. Also noting that the expected 

value of this quantity squared,  
2

( , )i i i iE d x y B 
 

 , is the variance of the frame, the 

expression is further reduced. If the reference and parallax sensing telescopes are the same 

or very close, the standard deviation of the LRT factors out of the expression as seen in 

(3.52). Otherwise, the expression for the SNR would utilize (3.51) for the variance.  
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(3.43)-(3.45) are divided by the (3.51) or (3.52) to come up with an algorithm analogous 

to SNR for an optical system consisting of two identical telescopes. By dividing the LRT 

by its standard deviation, it becomes a unit-normal Gaussian random number. This new 

correlation based MHT detection method can determine if an observation is a NEO or a 

stellar object given that an object has been detected. As seen below, the content of the data 

in each observed frame will be categorized based on which SNR computation produces the 

highest number.  
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Having a CD MHT detector that does not depend on the target’s irradiance is an advantage, 

because SNR thresholds,  , can be selected to achieve a desired false alarm probability, 

FAP . This is convenient because current SSN sensors are configured to achieve desired FAP  

values. Thus, the proposed CD MHT detection algorithm is ideal for a new SSN system 

consisting of identical telescopes. This thesis will look at objects in Geosynchronous orbit, 

but (3.53) may be used to detect any object which appears on the CCD as a point source 

and not a streak requiring that the telescope track the object of interest or that the CCD 

exposure time is short enough. 
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CD MHT with Different Telescopes 

Although the CD MHT detector using parallax is best for a system of identical sensors, it 

will also work when fusing data from a network of varied sensors. Currently, the USAF’s 

SSN is composed of only different optical sensors and due to the unique data processing 

approaches, CCD designs and aperture dimensions, the intensity of the signal detected from 

an observed space object, S, and the standard deviation of the data read out by the CCD 

detector will be different. In the derivation for the new algorithm, the standard deviation 

and object intensity were factored out to remove dependence on object signal strength from 

the algorithm in (3.15). The algorithm is easily re-written for a system of different optical 

sensors (3.25).  

1

2 2
2 21 2

1 2 2 1 1 1 11 2
1 2

1 1 1 11 2

( , ) ( , )( ( , ) ) ( ( , ) )
( ( , ) ( ( , )  

2

N N N N

N N N N ref i

x y x y
i ref i

x y x y

S S
h x y h x yd x y B d x y B

S h x y S h x y   
 


   



   

 
    

         
 

 
 

  (3.56) 

1

2 2
2 21 2

1 2 2 1 1 1 11 2
1 1 2

1 1 1 11 2

( , ) ( , )( ( , ) ) ( ( , ) )
( ( , ) ( ( , )  

2

N N N N

N N N N ref NEO

x y x y
ref NEO

x y x y

S S
h x y h x yd x y B d x y B

S h x y S h x y   
 


   



   

 
    

         
 

 
 

  (3.57) 

1

2 2
2 21 2

1 2 2 1 1 1 11 2
2 1 2

1 1 1 11 2

( , ) ( , )( ( , ) ) ( ( , ) )
( ( , ) ( ( , )  

2

N N N N

N N N N ref star

x y x y
ref star

x y x y

S S
h x y h x yd x y B d x y B

S h x y S h x y   
 


   



   

 
    

         
 

 
 

  (3.58) 

(3.56)-(3.58) have dependence on the object intensity in the left-hand side of the 

expression; one way to mitigate this is to compute the observed object’s irradiance from 

each of the two data sets and divide both sides by either S1 or S2 so that there is only a ratio 

of the intensities; in Equations (3.59) and (3.60), the former was chosen.  
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The SNR expression also changes when a system of two different optical sensors is being 

used due to the dependence on the object intensity and data frame standard deviation.  
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Again, there are two cases for each of the above quadruple sums, one where the terms in 

the sum are equal, i jx x  and i jy y , and one where they are all different, i jx x  and 

i jy y . Using the same argument as before, the expectation of the ( , )i i i id x y B  terms 

goes to zero because the pixels are independently distributed with the indexes aren’t 

equivalent in the sum. Frames of data from two different telescopes are always independent 

data sets and this term, likewise, ( , )i i i id x y B  has an expectation of zero.  
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It is interesting that the reduced expression for the variance depends on the object’s 

intensity, S, rather than the variance of the respective data frames which suggests that the 

noise of the system is driven by the sensor with the highest intensity.  
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Equations (3.65)-(3.67) are difficult to reduce further and   cannot be chosen based on 

statistical tables to achieve desired FAP . Even so, the algorithm can still be used to 

distinguish if an observed is a NEO or stellar object. This configuration also entails the 

necessity of additional computations to determine the signal intensity of an observation.  
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Performance Metrics  

The objective of the CD MHT algorithm is to detect if an object is present in a given frame 

of data and to correctly distinguish whether that detection is that of a satellite or a star. The 

three hypotheses are 1) the null hypothesis that a space object has not been detected in a 

given frame of data ( 0H ), 2) the hypothesis that an object has been detected in a given 

frame of data and that object is a NEO ( 1H ) and 3) the hypothesis that an object has been 

detected in a given frame of data and that object is a stellar object ( 2H ). Each of these 

hypotheses are defined using the statistical distribution which the data is expected to take 

in each of the three scenarios. The two LRT’s, 1( )frame  and 2 ( )frame , are computed 

by taking the ratio of 1H  and 2H  with 0H  respectively. Performance of the CD MHT 
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algorithm is quantified by probabilities which arise from the statistical distribution of the 

data sets. Using probability, the performance of the algorithm can be quantified. There are 

five probabilities of interest which include the probability of detection, DP , the probability 

of false alarm, FAP , the probability of satellite detection, 
NEODP , the probability of 

incorrectly detecting a star when a satellite is in the data, 
starIDP , and the probability missing 

a satellite detection, MissP  . The probability of a detection is that either 1( )frame  or 

2 ( )frame  is above the threshold when a target is present. The probability of false alarm 

is the probability that either 1( )frame  or 2 ( )frame  is above the threshold when no 

target is present. The probability of satellite detection is the probability that 1( )frame  is 

above the threshold and 1( )frame  is above 2 ( )frame  when a satellite observation is 

present. The probability of incorrectly detecting a star is the probability that 2 ( )frame  is 

above the threshold and 2 ( )frame  is above 1( )frame  when a satellite is in the data. The 

probability of satellite miss is the probability that 2 ( )frame  or 1( )frame  are below the 

threshold when an observation is present.   

Table 2: Performance Metrics Given Satellite Present 

Performance Metrics Data in Frame Categorization 

 1 2 1|DP P H     Satellite Present Object Present 

 1 2 0|FAP P H     Satellite not Present False Detection of Target 

 1 1 2 1|
NEODP P H       Satellite Present Correct Detection of NEO 

2 2 1 1( ) |
starIDP P H       Satellite Present Incorrect Detection of Star 

 1 2 1|MissP P H     Satellite Present Missed Detection of NEO 
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The same metrics apply given that a stellar object is in the data being tested. The probability 

of detection, of false alarm and of a missed detection are the same as before, but the 

probability of correctly and incorrectly detecting a satellite object or star changes. The 

probability of stellar object detection, 
starDP , is the probability that 2 ( )frame  is above the 

threshold and 2 ( )frame  is above 1( )frame  when a satellite observation is present . The 

probability of incorrectly detecting a satellite, 
NEOIDP , is the probability that 1( )frame  is 

above the threshold and 1( )frame  is above 2 ( )frame  given a stellar observation is 

present in the data.  

Table 3: Performance Metrics Given Stellar Object Present 

Performance Metrics Data in Frame Categorization 

 2 1 2|DP P H     Star Present Object Present  

 1 2 0|FAP P H     Star not Present False Detection of Target 

 2 2 1 2|
starDP P H       Star Present Correct Detection of Star 

1 1 2 2( ) |
NEOIDP P H       Star Present  Incorrect Detection of Star 

 2 1 2|MissP P H     Star Present Missed Detection of Star 

 

Due to the presence of noise in the data frames being run through the CD MHT algorithm, 

the value of 1( )frame  and 2 ( )frame  will differ with every run. Because the LRT is 

made up of a sum of many pixels, each of which is a random realization, the central limit 

theorem (CLT) dictates that the LRT follows a Gaussian distribution. The range of values 

which the LRT can take on makes up all possible thresholds. These thresholds depend on 

whether the data being tested has background or an observation present. There is a unique 

probability of detection for every distinct threshold value and a plot of these probabilities 

versus threshold values is called the cumulative distribution plot CDF plot. In the binary 
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hypothesis case, the probability of a detection given a certain threshold,  , can be 

computed by taking the integral from the threshold to infinity. This is also the right tail of 

the CDF and can be found by subtracting the CDF from 1.  
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  (3.68) 

Likewise, the probability of false alarm can be computed with the only difference being 

that the data under the null hypothesis is a zero-mean random number.  
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  (3.69) 

A Monte Carlo method is utilized to determine the mean, m, variance, 2 , and standard 

deviation,  , of the LRT so that probabilities can be computed using the Gaussian CDF. 

All the possible thresholds are also determined by taking the minimum and maximum of a 

data set containing many realized LRT values given many random data frame inputs under 

the hypotheses that an object is present or absent. With the introduction of multiple 

hypotheses, the computation of probability of detection becomes more challenging. The 

probability needs to consider that the LRT is larger than some threshold and larger than the 

LRT with the other detection hypothesis. Each LRT takes the form of a Gaussian random 

number, 1X  and 2X , defined respectively by its mean, 1m  and 2m , and standard deviation, 

1  and 2 . If the LRT given the hypothesis that a satellite is present minus the LRT given 

the hypothesis that a star is present is greater than unity, a satellite observation has taken 
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place. The probability that a satellite observation has taken place is found using the new 

random variable 1Z  which is the difference between the Gaussian random numbers 1X  and 

2X  (3.41). 1Z  is also a Gaussian random number because any linear combination of 

Gaussian random numbers produces another Gaussian random number; the mean of 1Z is 

the differences between the mean of 1X  and 2X  [17]. (3.72) and (3.73) show how to 

compute the variance of 1Z and the correlation coefficient between 1X  and 2X . 
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The probability that 1 2X X  is the same as the probability that 1 0Z  . This probability 

can be computed using the Gaussian CDF given the appropriate inputs.  

 
1 2 1 2 1( 0) ( 0)P P X X P Z         (3.74) 
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  (3.75) 

The probability of detecting a satellite when the satellite is present in the data is found by 

multiplying the probability that 1 2X X by the probability that an object has been detected, 

DP . If the two events are disjoint, the intersection of the two events is the product.  

  1 1 2 1
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|

( 0)

NEOD
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Likewise, the probability that a star observation has taken place is found using the new 

random variable 2Z  which is the difference between the random numbers 2X  and 1X .  2Z  

is also a Gaussian random number and following the same logic as before; the mean of 2Z  

is the differences between the mean of 2X  and 1X . (3.79) shows how to compute the 

variance of 2Z  and the correlation coefficient, 12 , is computed with (3.73). 
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Next is the converse, the probability that 2 1X X  is the same as the probability that 2 0Z 

. This probability can be computed using the Gaussian CDF given the appropriate inputs 

seen above.  
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  (3.81) 

As before, the probability of detecting a star when the star is present in the data is found 

by multiplying the probability that 2 1X X by the probability that an object has been 

detected, DP . 
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The computation of FAP  is also more complex given the multi-hypothesis case. A false 

alarm occurs when background data is present in the frame being tested but the CD MHT 

algorithm detects that a satellite or stellar object is present. Either of the LRTs need to be 

above the threshold in the presence of background for a detection to be made erroneously.  
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The probability that the two different LRTs are above the threshold is computed using the 

same methodology as with computing probability of detection as seen in (3.68).  
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  (3.84) 

Computing the joint probability that both LRTs are above the threshold involves the bi-

variate CDF and the joint probability involves integrating the density function of the bi-

variate Gaussian distribution given the appropriate inputs as seen in (3.85).  
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  (3.85) 

The bivariate CDF can be computed using the mean matrix, m , which is a matrix 

containing the mean of the two LRT’s and the covariance matrix,  , which is a matrix 

containing the variances on the diagonal and the covariances on the off-diagonal.  
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Each of the probabilities can be plotted together given the entire range of possible 

thresholds to show if the algorithm is effective at distinguishing between stellar and NEO 

observation detections. As the baseline distance between the parallax and reference 

telescopes increases, the probability of correctly detecting a satellite given that a satellite 

is present in the data will be higher than the probability of incorrectly detecting that a star 

is present or the probability of missing the detection of an object the data all together. 

Generally, the performance of a detection algorithm will be quantified using a receiver 

operating characteristics (ROC) curve. The ROC curve is a plot of the probability of 

detection versus the probability of false alarm. Such a curve is very useful when trying to 

compare the performance of different detection schemes. When the ROC curve for 

different detection schemes is plotted together, the algorithm which produces the higher 

probability of detection value given the same probability of false alarm has superior 

performance [19]. ROC curves will show the dependence of the CD MHT algorithm 

performance on the amount of separation between the reference and parallax sensing 

telescopes. Each iteration will have a different baseline and produce unique ROC curves. 

The ROC curve is also useful for quickly determining what the probability of detection 

will be given a probability of false alarm.   
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IV.  MATLAB Simulation  

In this chapter, the optical system with identical telescopes separated by varying baselines 

is simulated in MATLAB. Using the theory from Chapter 2, random data frames are 

generated by creating the paraxial PSF for the reference telescope and the non-paraxial 

PSF for the parallax sensing telescope for both stellar and GEO targets given the random 

effects of the atmosphere and the random effects photon arrivals. The CD MHT algorithm 

defined in Chapter 3 is tested with these simulated data frames as inputs producing an LRT 

value in the H1 and H2 case. Using a Monte Carlo approach by running thousands of 

randomly generated data frames through the CD MHT algorithm to produce many LRT 

realizations; these realizations were used to characterize the statistics of the CD MHT 

algorithm’s performance with different target SNR values.   

Simulation Setup  

The optical system used in this simulation is a F10 telescope with an aperture of 0.288 

meters and a focal length of 2.8 meters. Parabolic mirror telescopes utilize an internal 

reflector to focus observations on the CCD array so an obscuration of .095 meters was 

added to the aperture to make the simulation better emulate optical systems used for SSA. 

The aperture plane was made to be double the width of the aperture transmittance function 

to avoid aliasing from the wrap around effect when taking the Digital Fourier Transform. 

The aperture transmittance function of this system is depicted in Figure 10; it was defined 

as zero everywhere where there is an obstruction and outside the extent of the mirror and 

one across the un-obstructed primary mirror.  
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Figure 10: Aperture Transmittance Function for F10 Telescope in Simulation 

The phase from a distant object or background radiation travels through space before 

reaching the aperture from whence only the portions of the electromagnetic field 

intersecting the un-obstructed portions continue onwards. This is emulated in MATLAB 

by multiplying the phase function from the object by the aperture transmittance function. 

A quadratic phase factor from the mirror is added to the optical field which cancels with 

the Fresnel phase term when observing the propagated field at the focal plane of the optic. 

In this way, a Fourier transform of the aperture geometry will produce the system’s impulse 

response at the focal plane of the telescope’s mirror. As the optical field traveled from a 

far-off space object, it took the form of a plane wave, and the image viewed at the focal 

plane is the impulse response for this optical system. The impulse response was found by 

implementing Equation (2.7) into the simulation with the MATLAB FT2 command. Per 
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Equation (2.13), the PSF seen in Figure 11 was normalized such that the area under it is 

equal to 1. The sampling in the CCD plane was chosen so that each pixel is the size required 

for Nyquist sampling.  

 

Figure 11: F10 Telescope PSF from 2D Fourier Transform 

Average OTF  

The long exposure performance of the optical system was found to be the OTF of the 

perfect optical system multiplied by OTF of the Atmosphere as seen in the average optical 

transfer function section of Chapter 2. MATLAB was utilized to implement Equation 

(2.68) which is the transfer function for the atmosphere derived using Kolmogorov’s 

structure function. Figure 12 shows the structure function for the atmosphere given a seeing 

parameter of 15 cm and the optical system seen in Figure 10.  
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Figure 12: OTF of the Atmosphere with 15 cm ro and 28.8 cm Aperture Diameter 

Figure 13 shows the OTF of the F10 Telescope with an aperture diameter of 28.8 cm using 

the phase at the aperture of the reference telescope. This was computed by taking the 

Fourier Transform of the un-aberrated telescope PSF because the OTF and PSF are Fourier 

Transform pairs as stated in Equation (2.22). 
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Figure 13: OTF of F10 Telescope with 28.8 cm Diameter  

The Average Transfer Function resulting from a long exposure image of some distant 

object is found by multiplying the OTF of the perfect optical system by the transfer function 

of the atmosphere. The aberrated PSF or system PSF is computed by taking the inverse 

Fourier transform of this product. Figure 14 is the long exposure PSF of the optical system 

found by multiplying the atmospheric OTF by the un-aberrated telescope OTF. Figure 15 

is the PSF of the of the entire optical system; it shows what a distant star or space object 

would look like when being viewed with this optical system using long integration times 

in the absence of other noise factors. A long integration time is produced by opening the 

camera shutter for longer periods of time. The same effect could be realized by taking some 

number of short exposure images and averaging the resulting PSFs. 
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Figure 14: Total OTF of Atmosphere and Telescope with 15 cm r0 and D of 28.8 cm 

 

Figure 15: PSF of Total Optical System with 15 cm r0 and D of 28.8 cm 
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Off-Axis PSF  

The effects of parallax will be manifested in the movement and spatial distribution of the 

observed PSF through the reference and parallax sensing telescopes. A phase front is 

generated in MATLAB which encompasses both telescopes aperture planes. The phase is 

taken as a spherically symmetric electromagnetic field emanating from a distant point 

source. The two telescopes are arranged in the same plane a specified distance apart from 

each other as seen in Figure 4. These distances are referred to as telescope baselines. The 

selected F10 telescope with an aperture of 0.288 meters and a focal length of 2.8 meters 

was chosen to meet the limiting conditions that most of the energy in the PSF be within an 

area of the F number squared Nyquist pixels. As seen in Equation (2.38), meeting this 

condition ensures the accuracy of the off-axis propagation tool because the hybrid 

propagator correctly samples the PSF to prevent extra aliasing. The telescope modeled in 

simulation has an F# of approximately 10 so the PSF should be contained within a region 

of 100 Nyquist pixels squared. It is convenient that the PSF was normalized because the 

amount of total energy in a chosen region of the CCD plane is proportional to the total 

energy contained in the entire CCD. By doing a double sum of the PSF confined to the 

regions of 50 Nyquist pixels, as seen in Figure 16, and the double sum of the PSF confined 

in the region of 100 Nyquist pixels, the percent of total energy in these two regions is 84.8% 

and 98.6% respectively. This system beats the sampling requirement by almost a factor of 

ten. 
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Figure 16: Area Containing F10 Telescope PSF in Nyquist Pixels 

In this simulation, the baseline is only varied in the horizontal direction to show that the 

tilt aberrations are directly related to the separation of the two telescopes. Only varying the 

separations along one axis more clearly demonstrates how the spatial distribution of the 

non-paraxial PSF changes as it’s center location is specified to be farther from the optical 

focus of the telescope. Additionally, a simple coordinate transformation can put any two-

telescope system into this geometric orientation. The baselines were incremented from zero 

to 10 km in steps of 20 m, 200 m and 2000 m to produce five data sets between 0 m and 

100 m, 0 m and 1000 m and 0 m and 10000 m respectively. A GEO object is placed at 

36,000 km centered on the optical axis of the reference telescope. The phase curvature of 

the lens as defined in Chapter 2 was added to the electromagnetic phase from the GEO 

point source to model the complete phase in the aperture plane of each of the two telescopes 

and then multiplied by the aperture transmittance function to form the pupil function seen 
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in Equations (2.20) and (2.21). For the non-paraxial parallax sensing telescope, the PSF 

was computed by discretizing the hybrid propagator defined in the non-paraxial PSF 

generation section and noting that the entire array needs to be shifted to account for the 

center of that grid being located where geometric optics predicted the PSF to be centered.  

The PSF center location was specified based on geometric optics from the amount of 

horizontal baseline separation between the reference telescope and the parallax sensing 

telescope. The PSF separation is caused by the aberrations in the phase front which are 

present in the parallax sensing telescope’s phase but not present in the reference telescope’s 

phase. Table 4 shows the PSF center locations as predicted by geometric optics and the 

additional PSF shift from the tilt aberrations otherwise neglected by taking the Fourier 

Transform of the aperture. The extra shift was observed in the PSF generated using the 

hybrid propagator tool and clearly demonstrates the effects of parallax on the PSF in the 

parallax sensing telescope. Between 1 km and 10 km, the PSF moved an extra 1 Nyquist 

pixel to 7 Nyquist pixels.  

Table 4: F10 Telescope System with 288mm Aperture Diameter and 2.8m Focal Length 
Telescope 

Baseline 

(m) 

PSF Center 

Location 

(grids) 

PSF Center 

Location 

(um) 

PSF Shift 

from Phase 

(grids) 

PSF Shift 

from Phase 

(um) 

Total 

PSF Shift 

(grids) 

Total PSF 

Shift 

(um) 

20 0 0 0 0 0 0 

40 1 4.861 0 0 1 4.861 

60 1 4.861 0 0 1 4.861 

80 2 9.270 0 0 2 9.270 

100 2 9.720 0 0 2 9.720 

200 3 14.58 0 0 3 14.58 

400 6 29.16 0 0 6 29.16 

600 10 48.60 0 0 10 48.60 

800 13 63.18 0 0 13 63.18 

1000 16 77.67 1 4.861 17 82.64 

2000 32 155.5 1 4.861 33 160.4 

4000 64 311.0 2 9.722 68 330.6 

6000 96 466.7 3 14.58 99 481.3 

8000 128 622.1 5 24.31 133 646.5 

10000 160 777.6 7 34.03 167 811.8 
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The Reference PSF and non-paraxial PSFs produced with baselines of 0 m to 1000 m in 

iterations of 200 m are shown in Figure 17. The geometric shift of the off-axis PSF is 

annotated in the figures in Nyquist pixels. 

 

Figure 17: Non-Paraxial PSF From Baselines of 0 meters to 1000 meters with NEO 
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Figure 18 shows zoomed in images of the same six PSFs demonstrating the change in the 

spatial distribution of the PSFs which is due to the extra terms normally neglected by the 

Fresnel approximation at the focal point but accounted for by the non-paraxial propagator. 

 

Figure 18: Enlarged Non-Paraxial PSF From Baselines of 0 meters to 1000 meters 
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Starting with the non-paraxial PSF with a telescope separation of 400 m, the PSF starts to 

skew to the right in the horizontal direction. The mass of the PSF continues to lean to the 

right until its center of mass finally shifts by one additional pixel as seen in the enlarged 

non-paraxial PSF at a 1000 m telescope baseline. Also of note is that every off-axis PSF 

has a unique spatial distribution which, when applied as an input to the CD MHT algorithm, 

would be clearly identified. So, even in the absence of the geometric center change, the 

different PSFs are still distinguishable which clearly demonstrates the utility of the non-

paraxial propagation tool for detection purposes. Figure 19 and Table 5 shows the six PSF’s 

phase as decomposed into orthonormal Zernike polynomials. From the figure, the effects 

of propagating a PSF to an off-axis location as predicted by geometric optics can be 

precisely measured by Zernike polynomial weighting factors. The effects on the phase of 

the PSF as observed by a parallax sensing telescope are entirely described by Piston and 

Horizontal Tilt. The steady rightward shift of the PSF as seen in Figure 18 is a 

manifestation of the horizontal tilt aberration. Piston is the mean value of the optical wave-

front across the plane of interest; when the PSF is skewed due to tilt, the mean value of the 

phase will also change.  
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Figure 19: Zernike Polynomial Decomposition of Off-Axis PSFs at Varying Baselines 

Table 5: Decomposition of PSF Phase at Different Baselines into Zernike Polynomials 

 0m 200m 400m 600m 800m 1000m 

a1: Piston  -4.34 -5.98 -8.46 -11.4 -14.7 -18.3 

a2: Horizontal Tilt -0.00 -2.41 -4.83 -7.26 -9.68 -12.1 

a3: Vertical Tilt -0.00 -0.00 -0.00808 -0.0139 0.0208 -0.0284 

a4: De-focus -3.75 -3.75 -3.75 -3.75 -3.74 -3.74 

 

Next, a star is placed 4.5 lightyears away centered on the optical axis of the reference 

telescope; this distance is the distance to Alpha Centauri which is the next closest star to 

the earth. The phase curvature of the lens was added to the electromagnetic phase from the 

stellar point source to model the complete phase in the aperture plane of each of the two 

telescopes and then multiplied by the aperture transmittance function to form the pupil 

function seen in Equations (2.20) and (2.21). Figure 20 shows that as the baseline changes, 

the PSF location does not change in this configuration. This is due to the phase from the 

star at the plane of both the reference and parallax sensing telescopes being flat enough 

that there are no aberrations due to tilt and the PSF location stays centered in both 
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telescopes. Figure 21 shows the Zernike polynomial weighting factors at each baseline; for 

every baseline separation, the tilt, piston and defocus are constant. This verifies that tilt is 

not changing the spatial distribution of the PSFs given that a stellar object is being 

observed.  

 

Figure 20: Non-Paraxial PSF From Baselines of 0 meters to 1000 meters with Star 
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Figure 21: Zernike Polynomial Decomposition of Off-Axis PSFs at Varying Baselines 

From this simulation, it has been verified that the parallax experimental setup laid out in 

the non-paraxial PSF section of Chapter 2 produces off-axis PSFs with unique spatial 

distributions provided that an observation is close enough for parallax to induce tilt 

aberrations. Thus, the hybrid propagator is an effective tool for properly constructing the 

phase profile of off-axis PSFs. Shortly, it will be demonstrated that the CD MHT algorithm 

developed in Chapter 3 is effective at identifying these unique PSFs which easily allows 

for the proper categorization of SSA observations as either a NEO or a stellar object.   

Simulating Background Noise and Frames of Data   

MATLAB was utilized to simulate the PSF of a distant star assuming that the observation 

will be made from the collection of many photons incident on the detector with a finite 

integration time. The derivations in the photon counting noise section of Chapter 2 show 

clearly that the distribution when observing photons incident at a detector is Poisson. The 

PSF is found by computing the OTF of the optical system and taking the Inverse Fourier 
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Transform of that quantity. The average OTF section of Chapter 3 was utilized to create 

the PSF which is then convolved with an observed image to produce what will be seen by 

the CCD. Space observations’ luminosity is selected using the stellar magnitude scale 

which is a logarithmic quantity where a smaller number represents a brighter object. The 

relative brightness of objects can be compared to a magnitude one object which has the 

luminosity equivalent to the star known as Vega. Because either a stellar or GEO 

observation is so far away, the image will appear to be a point source to the telescope 

aperture. To simulate this, the center pixel of the plane containing that object is scaled by 

the number of photons expected to emanate from that object. The number of photons is 

computed using the magnitude of luminosity relative to Vega. Background luminosity is 

selected to achieve desired pixel SNR levels so that the performance of the algorithm can 

be tested across a wide range of relative luminosity. Every pixel in the observation frame 

was set to be the expected number of photons from the background which would produce 

data frames with the desired pixel SNR quantity. Figure 22 is an observation and 

background with the observation being a point source and the background set to achieve a 

desired SNR in the data frame.  
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Figure 22: Observation and Background Luminosity without Poisson Noise 

The observation in Figure 22 is convolved with the total system PSF to produce the image 

expected at the CCD array which is seen in Figure 23.  

 

Figure 23: Image at CCD Array 
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Because photon arrivals take on a Poisson distribution, data frames are randomized using 

the poissrnd command in MATLAB. Figure 24 shows a GEO observation in the presence 

of Poisson background noise at various SNR values.  

 

Figure 24: Parallax Data Frames Containing GEO Observations and Background Noise 
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Figure 25 shows a stellar observation in the presence of Poisson background noise at 

various SNR values. The difference between the stellar and the GEO observations is that 

the GEO observation maintains the spatial effects of parallax from the parallax PSF.  

 

Figure 25: Parallax Data Frames Containing Stellar Observations and Background Noise 
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Correlator Detector Multi-Hypothesis Test with System of Identical Telescopes  

As seen in Figures 24 and 25, it quickly becomes difficult to distinguish the PSF shape 

among the Poisson background noise. The purpose of this section is to demonstrate that 

even in the presence of such noise, the CD MHT algorithm developed in Chapter 3 can 

determine if a detection has occurred and what type of observation has been detected from 

single frames of data. For the simulation, Equation (3.53) is used for hypothesizing a NEO 

and Equation (3.54) is used for hypothesizing a stellar observation because dividing by the 

standard deviation under the null hypothesis produces a background with a unit normal 

distribution. With this selection, the false alarm probability, PFA, can easily computed using 

probability tables. This is convenient because USAF SSN sensors calibrate based on 

desired false alarm rates; otherwise, Equations (3.44) and (3.45) are just as valid for 

detection and categorization purposes. The performance of the simulation is quantified 

using the central limit theorem which dictates that a sum of many randomly distributed 

random variables tends towards a Gaussian distribution. During correlation between the 

hypothesized PSF for the reference and parallax sensing telescope with inputted data 

frames, many Poisson distributed pixels are being summed together causing the LRT to 

behave like a Gaussian Random Variable, RV. This Gaussian RV can be completely 

described across a range of thresholds by computing the mean and variance of the LRT’s 

Gaussian distribution. To do this, three thousand Monte Carlo Trials are run to find the 

sample mean and variance of the distribution. This was done by creating three thousand 

unique data frames and computing a vector of three thousand realizations of the LRT. The 

sample mean and sample variance is computed from the resulting vector of Gaussian RV’s 

and MATLAB is used to construct the performance metrics of the LRT. The probability of 
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false alarm, PFA, the probability of detection, PD, and the probability of missing a detection, 

PMiss, are created from these large samples of realized LRTs given test data frames 

containing targets corresponding to the three unique hypotheses. Each random data frame 

is created by specifying the altitude of the target, it’s luminescence and the luminescence 

of the background. A data cube of many LRT realizations for each type of target and at 

five different parallax telescope baselines is constructed to robustly describe the behavior 

of the derived algorithm. Baseline iterations will need to be calibrated depending on the 

optical equipment used and desired target altitude. In this simulation, baselines were 

selected in increments of 60 meters from 0 meters to 300 meters because a 60 meter 

baseline corresponds to a 1 Nyquist pixel shift, from Geometric Optics, of the PSF center 

location in the parallax sensing telescope. This is specific to the selected altitude of the 

GEO observation, diameter of the aperture, focal length of the optic, and grid size of the 

sampled data. Figure 26 shows the performance of the algorithm with the parallax sensing 

telescope placed 0 meters, 60 meters, 120 meters, 180 meters, 240 meters and 300 meters 

from the reference telescope. Data frames were generated with a target in GEO at 36,000 

km from the plane of the telescope apertures. The optical axis of the reference telescope is 

lined up with the target and the parallax sensing telescope is oriented such that it’s optical 

axis is parallel to the reference telescope’s optical axis. From the figure, the probability of 

detecting a NEO in the data, PD NEO, is over the probability of false alarm, PFA, for all 

thresholds and the ROC curve shows that even at extremely small PFA values on the order 

of 10-15, detection of the target is assured. At a baseline separation of 0 meters, the PSF 

looks exactly like a stellar PSF because the parallax sensing telescope is co-located with 

the reference telescope. The result that there is a 50/50 chance of either correctly detecting 
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a NEO or incorrectly detecting a star given the target is a NEO is logical and serves as a 

good reference point.  

 

Figure 26: Algorithm Performance with Satellite Present in Data Frame and SNR of 6 

The algorithm is next tested using data frames with a pixel SNR of 3 as seen in Figure 27. 

Given the additional noise in the data, PD NEO has dropped from nearly 100% to about 95% 

and PID STAR has risen from around 0% to 5% over the vast range of possible LRT thresholds 

given a 60 meter parallax telescope baseline. The ROC curve shows that the performance 

of the algorithm using a 60 meter baseline has diminished as compared to the other non-

zero baselines for PFA’s ranging from 10-7 to 1. With a pixel SNR of 3, PD NEO is above 95% 

for the 60 meter baseline optical system and nearly 100% at the other non-zero baseline 

systems given a PFA of 10-9. As seen in Figure 24, the PSF is hardly visually distinguishable 

in this case even though it’s brightest pixel is three times more luminescent than the average 

background pixels. PD NEO does not always range from 0% to 100% because there is also 

the opportunity to incorrectly detect a star.  
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Figure 27: Algorithm Performance with Satellite Present in Data Frame and SNR of 3 

From Figure 24, the shape of the PSF is not distinguishable by the human eye given an 

SNR of 2 in the data frame. As seen in Figure 28, the CD MHT algorithm is still performing 

well. Optical system arrangements with the parallax sensing telescope baseline separations 

from 180 meters to 300 meters still have a PD NEO of nearly 100% at a PFA of 10-9 and the 

systems with a 60 or 120 meter baseline are at about 85% and 95% for a PFA of 10-9. The 

ROC curve shows that for PFA values as small as 10-3, PD NEO is still nearly 100% given 

enough baseline separation. For baselines of higher than 180 meters, PID STAR is nearly 0% 

and at a 120 meter baseline, PID STAR is still below 3%. Even at a small PSF shift of two 

Nyquist pixels, the algorithm is very perceptive. It is also worth noting that the ROC curve 

for each successive baseline is over the lower baselines for SNR 2 indicating that as noise 

increases, larger baseline optical arrangements perform better than systems with smaller 

baselines.  
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Figure 28: Algorithm Performance with Satellite Present in Data Frame and SNR of 2 

At a SNR of 1, the magnitude of luminosity of a background pixel is equivalent to the 

magnitude of the target. Figure 29 shows that in the presence of more noise, the CD MHT 

algorithm’s performance is more dependent on baseline separation. The larger the baseline, 

the more dissimilar the non-paraxial PSF is to the reference PSF and the easier it is for the 

CD MHT algorithm to differentiate the observations. On the ROC curve plot, the three 

highest baselines performances are very close to each other and for systems with baselines 

of 180 meters to 300 meters, PD NEO only differs by 1-5% with the highest PD NEO among 

them maxing out at 95%. No matter how much extra baseline, PD NEO doesn’t get as high 

as 100% even for very large PFA values. Additional separation between the reference and 

parallax sensing telescope doesn’t buy extra performance at some level because at this SNR 

value, it is more probable that the algorithm will incorrectly determine that an observation 

is a star when it is a GEO observation. These results show that a NEO can be properly 

identified by the CD MHT algorithm even for low magnitude luminosity targets. 
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Figure 29: Algorithm Performance with Satellite Present in Data Frame and SNR of 1 

In Figure 30, the average background pixel magnitude is twice that of the target. PD NEO has 

decreased to 80% and PID STAR has increased to 20% for the largest baseline. The 

performance curves for the different baseline optical systems are being bounded by a 

smaller range of likelihoods as the chance of selecting the wrong hypothesis becomes more 

likely. For every optical system, there is some limiting factor to how well the algorithm 

can pull the shape of the non-paraxial PSF out of the background noise and differentiate 

that shape from other hypothesized targets. By SNRs of 1/3, as seen in Figure 31, PD NEO 

maxes out at 70% and the successive baseline’s performance curves are squeezed even 

closer together as PID STAR increases. At every threshold value, PID STAR and PD NEO sums to 

PD which ranges between 0 and unity. Figure 32 demonstrates that at pixel SNR values of 

1/6, PD NEO of all baseline configurations are squeezed even closer together with a baseline 

separation of 300 meters only providing a 10% increase over a 0 meter baseline separation 

where the reference and parallax PSF’s look identical.  
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Figure 30: Algorithm Performance with Satellite Present in Data Frame and SNR of 1/2 

 

 

Figure 31: Algorithm Performance with Satellite Present in Data Frame and SNR of 1/3 
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Figure 32: Algorithm Performance with Satellite Present in Data Frame and SNR of 1/6 

For lower SNR values, the logarithmic ROC curve is less meaningful because PD NEO 

does not level out at low PFA values; Figure 33 shows the ROC curves where PFA is 

varied linearly. Another useful observation is that as the target luminosity decreases, a 

larger baseline separation buys less performance. 

 

 

Figure 33: Linear ROC Curves at Different Baselines for SNR’s of 1, 1/2 and 1/3 
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In this simulation, the range of baselines was chosen so that each baseline increase 

corresponded to a 1 Nyquist pixel shift of the non-paraxial PSF center location. From the 

off-axis PSF section, the brightest part of the PSF has a radius of five to six Nyquist pixels 

and even at the largest simulated baseline of 300 meters, the non-paraxial PSF given a GEO 

target is overlapping with where the non-paraxial PSF given a stellar target would be. The 

power of the CD MHT algorithm is that it can extract the spatial distribution of a PSF from 

noisy data by correlating the data in a test frame with pre-determined hypotheses. The 

algorithm is effective at distinguishing between stellar and NEO targets even in noise 

dominated data frames with relatively small non-paraxial PSF shifts.  
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V. Experiment  

In this chapter, a dataset of synchronous observations of two targets by the SST and Naval 

Observatory telescopes as the targets are eclipsed by the earth are used as inputs to the CD 

MHT algorithm from Chapter 3. Geometric optics is used to properly register the PSF’s 

required by the CD MHT algorithm given the separation between the two telescopes. 

Following registration, the synchronous data frames are then run through the CD MHT 

algorithm to produce LRT realizations for each data frame under the H1 hypothesis. The 

LRT outputs are normalized by the standard deviation of the data, due to noise, to produce 

values in terms of SNR. These SNR values are used to determine the statistical probability 

of detection and correct categorization of the target as a NEO, PD NEO, using the 

performance metrics also derived in Chapter 3. The PD algorithm used by SSN ground 

based optical sensors today is also used to compute LRT realizations for every data frame. 

These LRT values are also normalized by the standard deviation of the of the data to 

determine the statistical probability of detection using heritage algorithms, PD. These 

performance of the heritage PD and new CD MHT algorithms are compared to demonstrate 

the utility of the new detection algorithm.  

Experimental Setup and System PSF Registration 

The purpose of the experiment is to test the new CD MHT detection algorithm to see if it 

correctly determines that an observation is a NEO based on the presence of parallax as 

hypothesized in the H1 case. The data collection took place simultaneously from the SST 

and Naval Observatory with both the ANIK-F1 and ANIK-F1R satellites in view as the 

two satellites are eclipsed by the earth. As the two satellites fall into the shadow of the 
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earth, their luminosity decreases until the satellites are dimmer than the background noise. 

The experimental setup is different than the ideal setup proposed in the non-paraxial PSF 

section of Chapter 2 because both telescopes were configured to track ANIK F1 using their 

gimbal systems. The parallax effects due to tilt are present in the aperture of the parallax 

sensing telescope when the telescope’s optical axis is not set to be aligned with the target. 

If the reference telescope is set to track the target while the parallax sensing telescope is 

set to maintain its optical axis parallel to that of the reference telescope’s, the parallax effect 

in the parallax sensing telescope is maximized. Because astronomical telescope systems in 

use today aren’t configured to track in such a manner, it was necessary to make due by 

observing two targets by two telescopes simultaneously. Henceforward, ANIK F1 will be 

referred to as the primary target and ANIK F1R will be referred to as the secondary target. 

Figure 34 demonstrates an exaggerated drawing of the system being tested. In the figure, 

the primary target’s phase-front is centered on both telescopes because they are aligned to 

track it causing the PSFs to be centered at the focal point on the CCD. The phase-front 

from the secondary target is not centered on the either aperture because neither telescope 

is set to track it which causes the PSF to be non-paraxial or not at the focus of the mirrors 

on either CCD array. Parallax is observable in the frames of SST and Naval Observatory 

telescope data because the PSF from the secondary target is in a different position relative 

to that of the primary target on each respective CCD. The pixel size of the CCD used in 

the Naval Observatory optical setup is not known so a first principles approach is used to 

determine the angular size of the pixels in the observed frames of data. The primary and 

secondary targets are both Geostationary NEOs and their position in the data does not 

change during the experiment. 
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Figure 34: Two Telescopes Tracking Primary Target and Secondary Target in FOV 

As the earth rotates, stars appear in the data frames of both telescopes; because the rotation 

speed of the earth is fixed, the apparent movement of the PSF’s due to stars in the data is 

also fixed and the time between successive data frames is known for each telescope. The 

apparent movement velocity of a star relative to an observation point on earth in degrees 

per unit time is 360 degrees in 23 hours 56 minutes and 4.1 seconds. Converted to degrees 

per seconds, the movement velocity is 360 degrees per 8.6264x104 seconds as seen in 

Equation (3.88). For the SST telescope, there is a new data frame every 1 second so each 

successive frame of data is 4.2x10-3 degrees forward of the prior frame.  
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A star’s PSF in the SST data was observed to move 9 pixels between successive frames. 

The angular size of the pixels in the SST’s CCD as computed by taking the known angular 

change between successive frames and dividing that by the number of pixels of motion 
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between successive frames resulting in a quantity in units of degrees per pixel. As seen in 

Equation (3.89) the SST’s CCD pixels were found to have an angular size of 4.6423x10-4 

degrees per pixel. 
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The same process was repeated with the data frames collected from Naval Observatory 

with the only difference being that the Naval Observatory has a longer integration time 

causing the stars to streak through the data rather than showing up as a PSF. Successive 

Naval Observatory data frames are 7 seconds apart. As seen in Equation (3.90), the angular 

separation between successive frames is 31.3x10-3 degrees per frame.  
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The length of the streak stays constant between successive data frames but it’s initial and 

final pixel coordinates are different and the number of pixels of motion between frames is 

computed by differencing either the initial or final coordinates of the steak in successive 

frames.  The number of pixels of motion between successive frames was found to be 186 

pixels and the angular size of each pixel was found to be 1.6847x10-4 degrees per pixel as 

seen in Equation (3.91).  

 
3

431.3 10 deg 1 frame deg
1.6847 10

1 frame 186 pixels pixel

x
x x


   (3.91) 

The motion of the stars also allowed for the proper orientation of the data frames because 

stars move in a Westward motion on the East-West axis. If the CCD’s horizontal axes were 

North-South and vertical axis were East-West, the star motion would be on the vertical 

axis. The amount of parallax in the aperture of the reference and parallax sensing telescopes 
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depends on the latitude, longitude and altitude of the secondary target as compared to that 

of the primary target which is aligned with both telescope’s optical axes as viewed from 

both telescope sites. Table 6 shows the coordinates of the primary target, secondary target, 

reference telescope site and parallax sensing telescope site. 

Table 6: Locations of Both Targets and Both Telescopes 

 Latitude (deg) Longitude (deg) Altitude (Km) 

ANIK F1  -0.03 -107.29 35,778.76 

ANIK F1-R 0.01 -107.30 35,784.53 

SST 32.943896 -106.41966 6,384 

Naval Observatory 35.184447 -111.73982 6,384 

 

As the crow flies, the Naval Observatory is 550.32 Km from the SST which can be broken 

down into 232.5753 Km in the East-West axis and 498.7593 Km in the North-South axis. 

The distance between the two satellites was found to be 30.27 Km by calculating the 

tangential distance between the coordinates on a sphere with a radius of approximately 

36,000 Km. The distance between the two telescopes is an order of magnitude more than 

the distance between the two satellites and the parallax effect will be proportional to the 

East-West and North-South distance difference between the two observation sites. Because 

star motion appears to be westward and the star motion in the CCD is in vertical the 

direction, it is expected that the difference in secondary target PSF location between the 

two telescopes in the vertical direction of the CCD will be approximately twice that of the 

horizontal direction. The actual secondary target PSF shift due to parallax in degrees is 

found for each telescope system by determining the position in pixels for both telescopes, 

converting those positions to degrees and then finding the difference between the two. 

Figure 35 shows a non-saturated data frame from the SST telescope and Figure 36 shows 

a non-saturated data frame from the Naval Observatory telescope. The PSFs from the two 
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telescopes look different because of differences in the optical setup of the respective 

telescopes to include aperture diameter, focal length, CCD pixel size and integration time.  

 

Figure 35: Observation from SST Telescope of ANIK-F1 and ANIK-F1R 

 

Figure 36: Observation from Naval Observatory Telescope of ANIK-F1 and ANIK-F1R 
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In both data frames, ANIK-F1 is the primary target and ANIK-F1R is the secondary target; 

ANIK-F1 is brighter than ANIK-F1R. It’s hard to tell that the secondary target’s PSF is in  

a different location from the data frames. Table 7 shows the location of the secondary 

target’s PSF in pixels and degrees as seen on the CCD for both telescopes as compared to 

the location of the primary target’s PSF on the CCD. It also shows the difference between 

the secondary target’s relative position in the CCD as seen by the SST location as compared 

to the position of the secondary target’s position in the CCD as seen by the Naval 

Observatory location. The difference in where the secondary target’s PSF shows up is 

because of parallax and as expected, the amount of PSF shift in the vertical axis is over 

twice that as seen in the horizontal axis. This is due to the observation locations being 

roughly twice as far in the East-West direction as compared to the North-South direction.  

Table 7: Registration of Parallax Effect due to Different Observation Locations 

Telescope 

Location 

y-axis PSF 

Separation 

(pixels) 

y-axis PSF 

Separation 

(deg) 

x-axis PSF 

Separation 

(pixels) 

x-axis PSF 

Separation 

(deg) 

SST 23 0.0107 14 0.00650 

Naval Observatory 68 0.0115 40 0.00670 

Difference (SST) 1.68 7.7867x10-4 0.516 2.3958x10-4 

Difference (Navy) 4.622 7.7867x10-4 1.422 2.3958x10-4 

 

The difference in Table 7 is shown in units of SST CCD pixels and in units of Naval 

Observatory CCD pixels; it is how many pixels the secondary target’s PSF needs to be 

shifted to put it where it would be in the other telescope’s CCD relative primary target’s 

PSF. The Naval Observatory has smaller pixels and it would more accurately quantify the 

PSF shift due to parallax; however, the SST has a faster integration time and thus, more 

data frames to run the CD MHT algorithm against. As seen in the simulation section, single 

pixel shifts are adequate to distinguish a NEO target from a stellar target so, the quantity 
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of data frames makes the SST telescope the best choice for the Parallax sensing telescope 

in the experiment due to the dimming target luminosity throughout during the data collect.  

Correlator Detector Multi-Hypothesis Test with System of Different Telescopes  

The Naval Observatory Telescope is set to be the reference telescope and the SST is set to 

be the parallax sensing telescope. For each hypothesis, there is a unique set of test PSFs 

against which the collected data is correlated with. The LRT as seen in Equation (3.60) was 

chosen to implement the CD MHT algorithm because the satellites being observed become 

dimmer during the data collect. Using the ratio of luminosities when the signal is high is a 

good way to determine the ratio without the effects of noise; otherwise, Equation (3.65) 

would be a good selection. To compute the ratio of the image intensity as seen in the 

parallax sensing telescope to that as seen in the reference telescope, the total photo-counts 

in each aperture were summed and then divided after removing the background photon 

contribution. The data read in by the reference telescope is correlated with the reference 

telescope’s expected PSF and the data read in by the parallax sensing telescope is correlated 

with PSF’s corresponding to the NEO and stellar object hypotheses which are H1 and H2 

respectively. The PSFs used in the algorithm are created from the collected data by 

selecting un-saturated data frames which better represent the spatial distribution of 

expected observations. The background of the frame of data is computed using a median 

filter [11] and then subtracted from all pixels in that frame of data. Any negative pixels are 

set to zero and the test PSF is created by normalizing this fame of data using Equation 

(2.13). The href, hneo and hstar test PSFs required to test for H1 and H2 using Equation (3.60) 

are created using this technique. The reference telescope’s test PSF, href, does not depend 
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on the presence of parallax, it seen in Figure 38. Proper registration of the remaining test 

PSFs is determined by the orientation of the observation location of the reference and 

parallax sensing telescopes as defined in Table 6 and Table 7. 

 

Figure 37: Test PSF for Reference Telescope 

Throughout the experiment, the location of the geostationary NEO target, ANIK-F1R, does 

not change, but due to parallax, the location of ANIK-F1R as observed on the CCD of the 

reference and parallax sensing telescopes is different. The parallax sensing telescope’s 

observations of ANIK-F1R are registered to be centered in the SST telescopes CCD and 

stellar observations are shifted to where they would be located as viewed by the reference 

telescope. Alternatively, the location of a stellar observation, which has un-detectable 

parallax present in the parallax sensing telescope’s aperture, could be registered at the 

CCD’s center to achieve the same result by shifting the ANIK-F1R observations to where 
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they would be as viewed by the parallax sensing telescope’s CCD. The remaining test 

PSFs, hneo and hstar, are shown in Figures 38 and 39 respectively.  The PSFs look very 

different from href because the reference and parallax sensing optical configurations differ. 

 

Figure 38: Test PSF for Parallax Sensing Telescope Hypothesizing H1 is true 
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Figure 39: Test PSF for Parallax Sensing Telescope Hypothesizing H2 is true 

SST data frames are generated at a rate of 1 per second and Naval Observatory data frames 

are generated at a rate of 1 per 7 seconds because the integration times differ between the 

two telescopes. The CD MHT algorithm takes in raw data from simultaneous observations 

of the target collected by the two telescopes; to achieve this, every frame of the SST data 

is fed into the test and new frame of Naval Observatory data is updated once the seventh 

SST data frame has been registered. Data frames were chosen to be 30 by 30 windows 

around the observed target. Equation (3.60) is easily implemented with the test PSFs by 

correlating the data read in by the Naval Observatory telescope’s CCD with its test PSF, 

href, and correlating the data read in by the SST’s CCD with the test PSF corresponding to 

either the H1 or H2 hypothesis, hneo or hstar. The second correlation is multiplied by the ratio 

of target intensities and then the two correlations are added together. In this manor, the two 
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LRT’s, 1( )frame  and 2 ( )frame , are computed by using Equation (3.60) to produce the 

two random variables. The LRT given H1 is hypothesized is divided by the local standard 

deviation making it a unit-normal Gaussian random variable and the effects of noise on 

this SNR are reduced using a moving average over 10 frames [11]. The Point Detector 

(PD) algorithm, as defined by Zingarelli [11], was also used to determine what the SNR 

would be for SSN sensors used by the USAF given the same data. Both the SNR from the 

CD MHT LRT and the PD algorithm are plotted in Figure 40; this value is the number of 

standard deviations the signal is over the background. From the figure, it is clear the CD 

MHT algorithm produces a higher SNR at lower target luminosities as compared to the PD 

algorithm. Figure 40 also shows that stars passing through the data, as seen in frames 424 

and 735, have a lower SNR value when using the CD MHT algorithm as compared to the 

when using the traditional PD detection algorithm.  

 

Figure 40: SNR using CD MHT and SNR using PD vs. SST Frame Number 
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The CD MHT algorithm performs better than the PD algorithm due to the correlator’s 

ability to compare an observed target’s PSF spatial distribution to the shape that is 

hypothesized.  Another gain of the CD MHT algorithm is that it is also able to distinguish 

whether a detection is a NEO or a stellar object by using multiple hypotheses. In this case, 

there are two hypotheses being tested by the CD MHT; the hypothesis that a NEO is present 

in the observed data, H1, and the hypothesis that a star is present in the observed data, H2. 

When run though the CD MHT, a LRT is produced for each of the two hypotheses. The 

two LRT’s, 1( )frame  and 2 ( )frame , are differenced as seen in Equation (3.70) 

producing the new random variable, Z1, which is then normalized and averaged the same 

way that the LRT was producing a unit-normal Gaussian random variable. The SNR of the 

Gaussian random variable, Z1, is seen in Figure 41. The figure shows that the CD MHT 

algorithm, as seen in Equation (3.60), correctly categorized the detections as a NEO.   

 

Figure 41: SNR of Z1 vs. SST Frame Number 
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Using the SNR to generate a probability curve is much more powerful than just using the 

SNR values to show that correct detections have been made because it represents the 

likelihood of making the correct choice given a desired PFA. The SNR values are used to 

find the probability of correctly detecting a NEO, PD NEO, when it is present in the observed 

data. 1( 0)P Z  is computed by using the CDF MATLAB command with a threshold of 

zero with inputs of the SNR value of each frame found using the Gaussian random variable 

Z1 which is seen in Figure 41.  PD is computed by using the CDF MATLAB command with 

a threshold of six standard deviations given inputs of the SNR value at each frame using 

the Gaussian random variable  1( )frame  as outputted by the CD MHT algorithm which 

is seen in Figure 42. PD NEO is found for each SST frame by multiplying 1( 0)P Z   by PD 

as seen in Equation (3.76). A threshold for detection of 6 standard deviations was selected 

to produce a PFA of 10-9 which is desired by USAF SSN applications. The probability of 

detecting a target, PD, using the standard PD algorithm was also computed using the CDF 

MATLAB command with a threshold of six standard deviation with inputs of the SNR 

value at each frame found using the Gaussian random variable computed using the PD 

algorithm. Figure 42 is the plot of PD NEO found using the CD MHT algorithm and PD found 

using the PD algorithm for this selected PFA. In the figure, the CD MHT algorithm has a 

superior performance as compared to the PD algorithm used by USAF SSN sensors 

currently with the additional bonus that the CD MHT algorithm also determines the type 

of observation being detected. The probability of detecting a star when a NEO is 

hypothesized using the CD MHT algorithm is also much smaller than the probability of 

detecting a star in the data using the PD algorithm.  
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Figure 42: PD NEO using CD MHT and PD using PD vs. SST Frame Number 

The data from the SST is used directly to test the ability of the CD MHT algorithm to detect 

a NEO; however, observations of stellar objects were not obtained because the telescopes 

were set to track the geostationary ANIK-F1 NEO and any observed stars streak through 

the data frames and the CD MHT algorithm was not designed to test against streaks.  These 

results demonstrate that heritage USAF SSN resources can implement this new detection 

process to determine if an observation is a NEO in a single frame of data. The SPOT facility 

at Lockheed Martin, Santa Cruz would be the ideal arrangement to test the performance of 

this algorithm because that facility has telescopes on railroad tracks allowing for an 

adjustable baseline, the telescopes are identical which would allow for the CD MHT 

algorithm to be independent of signal luminosity, and there are different CCD and 

telescope configurations which would allow the experiment to be optimized by maximizing 

PSF shift caused by parallax. 
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VI. Conclusions and Recommendations 

Conclusions 

The simulation and experiment showed that a system of either identical or different 

telescopes collecting simultaneous frames of data and separated by some physical baseline 

are effective at detecting parallax and the nature of a detected target can be categorized as 

either a stellar or NEO observation in a single frame of data. The simulation showed that 

increasing the baseline difference between the reference and parallax sensing telescopes 

increases the performance of the CD MHT algorithm when the luminosity of the target is 

closer to that of the background. When the target is much brighter than the background, as 

seen in the SNR 6 simulation, all system baselines correctly detect and categorize the target 

with assuredness. At a SNR 2, the algorithm has a probability of correctly detecting and 

categorizing the target as a NEO, PD NEO, of 85% to 95%, depending on baseline, by setting 

the false alarm probability, PFA, to 10-9.  For low luminosity targets, the utility of a larger 

baseline is somewhat diminished. The simulation also shows the usefulness of more 

accurate field propagation techniques dispelling the anecdote that the additional aberrations 

neglected by the Fresnel approximation aren’t useful. The propagation technique evaluated 

in this thesis was demonstrated to more accurately model optical systems allowing for 

novel improvements in SSA sensors; even in the absence of a geometric PSF shift, the 

algorithm can distinguish unique PSF shapes. The experiment showed that real USAF SSN 

assets can be utilized in their present state to detect the parallax effect in observations and 

correctly identify a target in single data frames. Moreover, the probability of detecting a 

NEO target and correctly categorizing that detection, PD NEO, is higher than the probability 
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of target detection, PD, using heritage techniques. This is a big improvement over heritage 

PD algorithms which also require target detection in 3-5 successive frames to register a 

detection. The CD MHT algorithm could also be used to determine the altitude of a given 

observation by using more hypothesized PSF’s or the speed of an observation by using 

successive frames and effects of horizontal or vertical tilt. With the altitude, speed, right 

ascension and declination, all orbital parameters of the satellite can be computed. Overall, 

these results show that implementation of the CD MHT algorithm proposed by the AF 

would be in line with AF leadership goals to network existing architecture for increased 

performance. This body of work shows that the USAF SSN ground based optical sensors 

can share data in a way which improves performance without adding to cost.  

Recommendations 

A major limitation of the experiment is that it was done on a non-ideal optical setup; data 

from a more ideal optical system such as Lockheed Martin’s SPOT facility would allow 

for the optimization and complete statistical characterization of the algorithm with real 

data. Provided the resources, the USAF could develop a system of rapidly deployable, low 

cost ground based optical sensors with an Ad-Hoc communication scheme for networking 

and data-sharing. The system could be deployed to any region based on need and provide 

live data to the JSpOC JMS based on the operational needs of the USAF. Already operating 

USAF SSN sensors could be better leveraged by sharing their data to utilize more 

perceptive detection schemes such as the CD MHT algorithm. Future students or research 

organizations could further this body of work by extending the use of the CD MHT 

algorithm to characterize the altitude and speed of space observations or by developing 

systems of interconnected telescopes to produce fused data sets.  
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